DOI QR코드

DOI QR Code

Catalytic Combustion of Methane over $AMnAl_{11}O_{19}$(A=La, Sr, Ba) and $CeO_2/LaAMnAl_{11}O_{19}$

$AMnAl_{11}O_{19}$(A=La, Sr, Ba) 및 $CeO_2/LaAMnAl_{11}O_{19}$를 이용한 메탄의 촉매 연소

  • Kim, Seongmin (Department of Chemical & Biological Engineering, Korea University) ;
  • Lee, Joon Yeob (Department of Chemical & Biological Engineering, Korea University) ;
  • Cho, In-Ho (Corporate R&D Center, SK Energy Instituted of Technology) ;
  • Lee, Dae-Won (Research Institute of Clean Chemical Engineering Systems, Korea University) ;
  • Lee, Kwan-Young (Department of Chemical & Biological Engineering, Korea University)
  • 김성민 (고려대학교 화공생명공학과) ;
  • 이준엽 (고려대학교 화공생명공학과) ;
  • 조인호 (SK에너지 기술원) ;
  • 이대원 (고려대학교 청정화공시스템연구소) ;
  • 이관영 (고려대학교 화공생명공학과)
  • Published : 2011.10.01

Abstract

Mn substituted La, Sr or Ba-hexaaluminate were prepared by $(NH_4)_2CO_3$ co-precipitate method and calcined at $1,200^{\circ}C$ for 5 h. Catalysts were characterized by X-ray diffraction and $N_2$ physisorption and scanning electron microscope (SEM). Compared to $SrMnAl_{11}O_{19}$ and $BaMnAl_{11}O_{19}$, $LaMnAl_{11}O_{19}$ in which La located at mirror plane showed better crystallinity and high surface area, 13 $m^2/g$. $LaMnAl_{11}O_{19}$ revealed well developed plate-like structure which is characteristic structure of hexaaluminate. The catalytic activity of methane combustion increased in the following order: $LaMnAl_{11}O_{19}$ > $SrMnAl_{11}O_{19}$ > $BaMnAl_{11}O_{19}$ and was dependent on surface area of catalysts. 60 wt% $CeO_2/LaMnAl_{11}O_{19}$ calcined at $700^{\circ}C$ showed enhanced methane activity and methane was oxidized completely at low temperature ($700^{\circ}C$). It was confirmed that addition of ceria seems to be effective for the low and middle temperature combustion of methane. But, after calcination at high temperature of $1,200^{\circ}C$, it lost the promoting effect of ceria due to increase of ceria particle size and it had a limit to applying to the high temperature catalytic combustion.

Mn이 치환된 헥사알루미네이트 촉매인 $LaMnAl_{11}O_{19}$, $BaMnAl_{11}O_{19}$, $SrMnAl_{11}O_{19}$$(NH_4)_2CO_3$ 공침법을 이용하여, $1,200^{\circ}C$ 5시간 소성을 통해 제조하였다. X-선 회절, 질소흡착을 통해 촉매의 결정구조와 비표면적을 분석한 결과, 결정 격자 내 거울면에 La이 존재하는 $LaMnAl_{11}O_{19}$$BaMnAl_{11}O_{19}$$SrMnAl_{11}O_{19}$보다 우수한 헥사알루미네이트 결정 구조를 가지는 동시에 13 $m^2/g$의 높은 비표면적을 가지고 있었다. 또한 SEM 분석을 통해 $LaMnAl_{11}O_{19}$이 특유의 판상구조가 잘 발달함을 확인하였다. 메탄 연소 활성은 다음과 같은 차례로 증가하였고: $LaMnAl_{11}O_{19}$ > $SrMnAl_{11}O_{19}$ > $BaMnAl_{11}O_{19}$. 메탄 연소 활성은 비표면적에 의존하였다. $LaMnAl_{11}O_{19}$에 60 wt%의 $CeO_2$를 첨가하고 $700^{\circ}C$의 저온에서 소성한 경우 $700^{\circ}C$의 저온에서 100% 전환율에 도달함으로써 ceria 첨가에 의한 메탄 연소 개선 효과를 확인할 수 있었으며, 이 촉매가 저온 및 중온 영역의 메탄 연소 촉매로 활용될 수 있음을 확인하였다. 그러나, 이 촉매의 경우 $1,200^{\circ}C$의 고온에서 5시간 소성한 후에는 ceria입자 크기의 증가로 인해 메탄의 연소 활성 개선 효과를 잃게됨으로 고온용 연소 촉매로서의 사용은 한계가 있음을 확인하였다.

Keywords

References

  1. Prasad, R., Kennedy, L. A. and Ruckenstein, E., "Catalytic Combustion," Catal. Rev. Sci. Eng., 26(1), 1-58(1984). https://doi.org/10.1080/01614948408078059
  2. Groppi, G., Belloli, A., Tronconi, E. and Forzatti, P., "Catalytic Combustion of $CO-H_{2}$ on Manganese-substituted Hexaaluminates," Catal. Today, 29(1-4), 403-407(1996). https://doi.org/10.1016/0920-5861(95)00311-8
  3. Reddy, S. and Vyas, S., "Recovery of Carbon Dioxide and Hydrogen from PSA Tail Gas," Energy Procedia, 1(1), 149-154(2009). https://doi.org/10.1016/j.egypro.2009.01.022
  4. Ayastuy, J. L., Gurbani, A., González-Marcos, M. P. and Gutiérrez- Ortiz, M. A., "CO Oxidation on $Ce_{X}Zr_{1-X}O_{2}$-supported CuO Catalysts: Correlation Between Activity and Support Composition," Appl. Catal. A: Gen., 387(1-2), 119-128(2010). https://doi.org/10.1016/j.apcata.2010.08.015
  5. Wilkes, M. F., Hayden, P. and Bhattacharya, A. K., "Catalytic Studies on Ceria Lanthana Solid Solutions I. Oxidation of Methane," J. Catal., 219(2), 286-294(2003). https://doi.org/10.1016/S0021-9517(03)00044-7
  6. Lee, S. H., Lee, J. Y., Park, Y. M., Wee, J.-H. and Lee, K.-Y., "Complete Oxidation of Methane and CO at Low Temperature over $LaCoO_{3}$ Prepared by Spray-freezing/freeze-drying Method," Catal. Today, 117(1-3), 376-381(2006). https://doi.org/10.1016/j.cattod.2006.05.035
  7. Kusar, H. M. J., Ersson, A. G. and Järås, S. G., "Catalytic Combustion of Gasified Refuse-derived Fuel," Appl. Catal. B: Environ., 45(1), 1-11(2003). https://doi.org/10.1016/S0926-3373(03)00104-8
  8. Xu, Z., Zhen, M., Bi, Y. and Zhen, K., "Catalytic Properties of Ni Modified Hexaaluminates $LaNi_{y}Al_{12-y}O_{19-\delta}$ for $CO_{2}$ Reforming of Methane to Synthesis Gas," Appl. Catal. A: Gen., 198(1-2), 267-273(2000). https://doi.org/10.1016/S0926-860X(99)00518-9
  9. Zhang, K., Zhou, G., Li, J. and Cheng, T., "The Electronic Effects of Pr on $La_{1-x}Pr_{x}NiAl_{11}O_{19}$ for $CO_{2}$ Reforming of Methane," Catal. Commun., 10(14), 1816-1820(2009). https://doi.org/10.1016/j.catcom.2009.06.007
  10. Bansal, N. P. and Zhu, D., "Thermal Properties of Oxides with Magnetoplumbite Structure for Advanced Thermal Barrier Coatings," Surf. Coat. Technol., 202(12), 2698-2703(2008). https://doi.org/10.1016/j.surfcoat.2007.09.048
  11. Machida, M., Eguchi, K. and Arai, H., "Catalytic Properties of $BaMal_{11}O_{19-\alpha}$(M=Cr, Mn, Fe, Co, and Ni) for High-temperature Catalytic Combustion," J. Catal., 120(2), 377-386(1989). https://doi.org/10.1016/0021-9517(89)90277-7
  12. Trovarelli, A., de Leitenburg, C., Boaro, M. and Dolcetti, G., "The Utilization of Ceria in Industrial Catalysis," Catal. Today, 50(2), 353-367(1999). https://doi.org/10.1016/S0920-5861(98)00515-X
  13. Bueno-López, A., Krishna, K., Makkee, M. and Moulijn, J. A., "Enhanced Soot Oxidation by Lattice Oxygen Via $La^{3+}$-doped $CeO_{2}$," J. Catal., 230(1), 237-248(2005). https://doi.org/10.1016/j.jcat.2004.11.027
  14. Zheng, J., Ren, X., Song, Y. and Ge, X., "Catalytic Combustion of Methane over Iron- and Manganese-substituted Lanthanum Hexaaluminates," React. Kinet. Catal. Lett., 97(1), 109-114(2009). https://doi.org/10.1007/s11144-009-0013-5
  15. Inoue, H., Sekizawa, K., Eguchi, K. and Arai, H., "Changes of Crystalline Phase and Catalytic Properties by Cation Substitution in Mirror Plane of Hexaaluminate Compounds," J. Solid State Chem., 121(1), 190-196(1996). https://doi.org/10.1006/jssc.1996.0027
  16. Li, S., Liu, H., Yan, L. and Wang, X., "Mn-substituted Ca-La- Hexaaluminate Nanoparticles for Catalytic Combustion of Methane," Catal. Commun., 8(3), 237-240(2007). https://doi.org/10.1016/j.catcom.2006.05.039