DOI QR코드

DOI QR Code

Phase Change of Nanorod-Clustered $MnO_2$ by Hydrothermal Reaction Conditions and the Lithium-ion Battery Cathode Properties of $LiMn_2O_4$ Prepared from the $MnO_2$

수열합성 조건에 따른 나노로드 클러스터형 $MnO_2$의 상변화와 이를 이용한 $LiMn_2O_4$의 리튬이온전지 양전극 특성

  • Kang, Kun-Young (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute(ETRI)) ;
  • Choi, Min Gyu (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute(ETRI)) ;
  • Lee, Young-Gi (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute(ETRI)) ;
  • Kim, Kwang Man (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute(ETRI))
  • 강근영 (한국전자통신연구원 융합부품소재부문 전력제어소자팀) ;
  • 최민규 (한국전자통신연구원 융합부품소재부문 전력제어소자팀) ;
  • 이영기 (한국전자통신연구원 융합부품소재부문 전력제어소자팀) ;
  • 김광만 (한국전자통신연구원 융합부품소재부문 전력제어소자팀)
  • Published : 2011.10.01

Abstract

Nanorod-clustered $MnO_2$ precursors with ${\alpha}$-, ${\beta}$-, and ${\gamma}$-phases are synthesized by hydrothermal reaction of $MnSO_45H_2O$ and $(NH_4)S_2O_8$. The formation of nanorod-clustered ${\beta}-MnO_2$ is particularly confirmed under the conditions of high reactant concentration and hydrothermal reaction at $150^{\circ}C$. The spinel $LiMn_2O_4$ nanorod-clusters are also prepared by lithiating the $MnO_2$ precursors, varying the concentration of lithiating agent ($LiC_3H_3O_2{\cdot}2H_2O$) and heat treatment temperature, and characterized for use as cathode material of lithium-ion batteries. As a result, the nanorod-clustered $LiMn_2O_4$ prepared from the ${\beta}-MnO_2$ at higher $LiC_3H_3O_2{\cdot}2H_2O$ concentration and the annealing at $800^{\circ}C$ is proven to show the cubic spinel structure and to achieve the high initial discharge capacity of 120 mAh/g.

$MnSO_45H_2O$$(NH_4)S_2O_8$의 수열반응으로 1차원 나노로드들이 침상으로 클러스터화된 구조의 $MnO_2$를 제조하고 그 모폴로지와 결정성을 분석하였다. 수열반응의 조건에 따라 ${\alpha}$-, ${\beta}$-, ${\gamma}-MnO_2$ 등의 전구체가 제조될 수 있는데, 고농도 반응물 및 높은 수열합성 온도($150^{\circ}C$)에서 전기화학적 활성이 우수한 나노로드 클러스터 ${\beta}-MnO_2$의 생성을 확인하였다. 또한 리튬화제 $LiC_3H_3O_2{\cdot}2H_2O$의 농도와 열처리 온도를 변화시키면서 $MnO_2$를 리튬화하여 스피넬계 $LiMn_2O_4$를 제조하고 리튬이온전지 양전극으로서의 특성을 조사하였다. 결과적으로 나노로드 클러스터형 ${\beta}-MnO_2$로부터 고농도 리튬화제와 $800^{\circ}C$ 열처리를 통해 제조한 $LiMn_2O_4$가 정방형 스피넬에 가장 가까운 구조임을 확인하였으며, 120 mAh/g의 우수한 초기 방전용량을 나타내었다.

Keywords

References

  1. Curtis, C. J., Wang, J. and Schulz, D. L., "Preparation and Characterization of $LiMn_{2}O_{4}$ Spinel Nanoparticles as Cathode Materials in Secondary Li Batteries," J. Electrochem. Soc. 151, A590-A598(2004). https://doi.org/10.1149/1.1648021
  2. Li, N., Patrissi, C. J., Che, G. and Martin, C. L., "Rate Capabilities of Nanostructured $LiMn_{2}O_{4}$ Electrodes in Aqueous Electrolyte," J. Electrochem. Soc. 147, 2044-2049(2000). https://doi.org/10.1149/1.1393483
  3. Li, X., Cheng, F., Guo, B. and Chen, J., "Template-Synthesized $LiCoO_{2}$, $LiMn_{2}O_{4}$, and $LiNi_{0.8}Co_{0.2}O_{2}$ Nanotubes as the Cathode Materials of Lithium Ion Batteries," J. Phys. Chem. B 109, 14017-14024(2005). https://doi.org/10.1021/jp051900a
  4. Luo, J.-Y., Cheng, L. and Xia, Y.-Y., "$LiMn_{2}O_{4}$ Hollow Nanosphere Electrode Material with Excellent Cycling Reversibility and Rate Capability," Electrochem. Commun. 9, 1404-1409(2007). https://doi.org/10.1016/j.elecom.2007.01.058
  5. Luo, J.-Y., Xiong, H.-M. and Xia, Y.-Y., "$LiMn_{2}O_{4}$ Nanorods, Nanothorn Microspheres, and Hollow Nanospheres as Enhanced Cathode Materials of Lithium Ion Battery," J. Phys. Chem. C. 112, 12051-12057(2008). https://doi.org/10.1021/jp800915f
  6. Cao, A. M., Hu, J. S., Liang, H. P. and Wan, L. J., "Self-Assembled Vanadium Pentoxide ($V_{2}O_{5}$) Hollow Microspheres from Nanorods and Their Application in Lithium-ion Batteries," Angew. Chem. Intern. Ed., 44, 4391-4395(2005). https://doi.org/10.1002/anie.200500946
  7. Wang, X. and Li, Y., "Rational Synthesis of $\alpha-MnO_{2}$ Single-Crystal Nanorods", Chem. Commun, 764-765(2002).
  8. Wang, X. and Li, Y., "Selected-Control Hydrothermal Synthesis of $\alpha$- and $\beta-MnO_{2}$ Single Crystal Nanowires," J. Am. Chem. Soc. 124, 2880-2881(2002). https://doi.org/10.1021/ja0177105
  9. Yuan, J., Li, W.-N., Gomez, S. and Suib, S. L., "Shape-Controlled Synthesis of Manganese Oxide Octahedral Molecular Sieve Three-Dimensional Nanostructures," J. Am. Chem. Soc., 127, 14184-14185(2005). https://doi.org/10.1021/ja053463j
  10. Thackeray, M. M., "Manganese Oxides for Lithium Battery," Prog. Solid State Chem., 25, 1-71(1997). https://doi.org/10.1016/S0079-6786(97)81003-5
  11. Bao, S.-J., Li, C.-M., Li, H.-L. and Luong, J. H. T., "Morphology and Electrochemistry of $LiMn_{2}O_{4}$ Optimized by Using Different Mn-Sources," J. Power Sources 164, 885-889(2007). https://doi.org/10.1016/j.jpowsour.2006.11.015
  12. Jiang, C. H., Dou, S. X., Liu, H. K., Ichihara, M. and Zhou, H. S., "Synthesis of Spinel $LiMn_{2}O_{4}$ Nanoparticles through One-Step Hydrothermal Reaction," J. Power Sources 172, 410-415 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.039
  13. Fang, H., Li, L., Yang, Y., Yan, G. and Li, G., "Low-Temperature Synthesis of Highly Crystallized $LiMn_{2}O_{4}$ from Alpha Manganese Oxide Nanorods," J. Power Sources 184, 494-497(2008). https://doi.org/10.1016/j.jpowsour.2008.04.011
  14. Shaju, K. M. and Bruce, P. G., "A Stoichiometric Nano-$LiMn_{2}O_{4}$ Spinel Electrode Exhibiting High Power and Stable Cycling," Chem. Mater. 20, 5557-5562(2008). https://doi.org/10.1021/cm8010925
  15. Kim, D. K., Muralidharan, P., Lee, H.-W., Ruffo, R., Yang, Y., Chan, C. K., Peng, H., Huggins, R. A. and Cui, Y., "Spinel $LiMn_{2}O_{4}$ Nanorods as Lithium Ion Battery Cathodes," Nano Lett. 8, 3948-3952(2008). https://doi.org/10.1021/nl8024328
  16. Hosono, E., Kudo, T., Honma, I., Matsuda, H. and Zhou, H., "Synthesis of a Single Crystalline Spinel $LiMn_{2}O_{4}$ Nanowires for a Lithium Ion Battery with High Power Density," Nano Lett. 9, 1045-1051(2009). https://doi.org/10.1021/nl803394v
  17. Cho, J., "$VO_{x}$-coated $LiMn_{2}O_{4}$ nanorod clusters for lithium battery cathode materials," J. Mater. Chem. 18, 2257-2261(2008). https://doi.org/10.1039/b719177d
  18. Tang, W., Yang, X., Liu, Z. and Ooi, K., "Preparation of $\beta-MnO_{2}$ Nanocrystal/Acetylene Black Composites for Lithium Batteries," J. Mater. Chem. 13, 2989-2995(2003). https://doi.org/10.1039/b306780g
  19. Luo, J.-Y., Zhang, J.-J. and Xia, Y.-Y., "Highly Electrochemical Reaction of Lithium in the Ordered Mesoporous $\beta-MnO_{2}$," Chem. Mater. 18, 5618-5623(2006). https://doi.org/10.1021/cm061458o
  20. Jiao, F. and Bruce, P. G., "Mesoporous Crystalline $\beta-MnO_{2}$-A Reversible Positive Electrode for Rechargeable Lithium Batteries," Adv. Mater. 19, 657-660(2007). https://doi.org/10.1002/adma.200602499
  21. Kim, I. Y., Ha, H.-W., Kim, T. W., Paik, Y., Choy, J.-H. and Hwang, S.-J., "Origin of Improved Electrochemical Activity of b-$MnO_{2}$ Nanorods: Effect of the Mn Valence in the Precursor on the Crystal Structure and Electrode Activity of Manganates," J. Phys. Chem. C 113, 21274-21282(2009). https://doi.org/10.1021/jp908556h
  22. Huang, X., Lv, D., Zhang, Q., Chang, H., Gan, J. and Yang, Y., "Highly crystalline Macroporous $\beta-MnO_{2}$: Hydrothermal Synthesis and Application in Lithium Battery," Electrochim. Acta 55, 4915-4920(2010). https://doi.org/10.1016/j.electacta.2010.03.090

Cited by

  1. 상용 고용량 리튬이온이차전지용 NCA 양극활물질의 전기화학적 특성 vol.55, pp.2, 2011, https://doi.org/10.9713/kcer.2017.55.2.163
  2. Deposition of Functional Organic and Inorganic Layer on the Cathode for the Improved Electrochemical Performance of Li-S Battery vol.55, pp.4, 2011, https://doi.org/10.9713/kcer.2017.55.4.483
  3. CO2 레이저 환원법과 원자층 증착법을 이용한 VOx/Graphene 복합체 제조 및 전기화학적 성능 평가 vol.58, pp.1, 2020, https://doi.org/10.9713/kcer.2020.58.1.135