DOI QR코드

DOI QR Code

Preparation of Chitosan/Poly-${\gamma}$-glutamic Acid Nanoparticles and Their Application to Removal of Heavy Metals

키토산/폴리감마글루탐산 나노입자의 제조 및 중금속 제거에의 응용

  • Sung, Ik-Kyoung (Department of Chemical Engineering, College of Engineering, Chungbuk National University) ;
  • Song, Jae Yong (Department of Chemical Engineering, College of Engineering, Chungbuk National University) ;
  • Kim, Beom Soo (Department of Chemical Engineering, College of Engineering, Chungbuk National University)
  • Published : 2011.08.01

Abstract

Chitosan is a natural polymer that has many physicochemical(polycationic, reactive OH and $NH_2$ groups) and biological(bioactive, biocompatible, and biodegradable) properties. In this study, chitosan nanoparticles were prepared using poly-${\gamma}$-glutamic acid(${\gamma}$-PGA) as gelling agent. Nanoparticles were formed by ionic interaction between carboxylic groups in ${\gamma}$-PGA and amino groups in chitosan. Chitosan(0.1~1 g) was dissolved in 100 ml of acetic acid (1% v/v) at room temperature and stirred overnight to ensure a complete solubility. An amount of 0.1 g of ${\gamma}$-PGA was dissolved in 90 ml of distilled water at room temperature. Chitosan solution was dropped through needle into beaker containing ${\gamma}$-PGA solution under gentle stirring at room temperature. The average particle sizes were in the range of 80~300 nm. The prepared chitosan/${\gamma}$-PGA nanoparticles were used to examine their removal of several heavy metal ions($Cd^{2+}$, $Pb^{2+}$, $Zn^{2+}$, $Cu^{2+}$, and $Ni^{2+}$) as adsorbents in aqueous solution. The heavy metal removal capacity of the nanoparticles was in the order of $Cu^{2+}$ > $Pb^{2+}$ > $Cd^{2+}$ > $Ni^{2+}$ > $Zn^{2+}$.

키토산은 천연고분자 물질로 다양한 물리화학적(다중양이온, 반응성 수산화기와 아미노기 그룹), 생물학적(생리활성, 생체적합성, 생분해성) 특성을 가지고 있다. 본 연구에서는 겔형성제로 폴리감마글루탐산을 이용하여 키토산 나노입자를 제조하였다. 나노입자는 폴리감마글루탐산의 카르복실기($-COO^-$)와 키토산의 아미노기($-NH_3^+$)사이의 이온 상호작용에 의해 형성되었다. 키토산(0.1~1 g)을 100 ml 아세트산 용액(1% v/v)에 첨가한 후 상온에서 충분히 용해되도록 하룻밤 동안 교반하였다. 폴리감마글루탐산(0.1 g)은 상온에서 90 ml 증류수에 용해시켰다. 교반되고 있는 폴리감마글루탐산 용액에 키토산 용액을 주사바늘을 통해 상온에서 적가하였다. 입자의 평균 크기는 80~300 nm 범위에서 형성되었다. 키토산/폴리감마글루탐산 나노입자는 중금속 이온들($Cd^{2+}$, $Pb^{2+}$, $Zn^{2+}$, $Cu^{2+}$, $Ni^{2+}$)의 제거를 위해 콜로이드 상태의 흡착 물질로 사용되었다. 나노입자의 중금속 제거 능력은 $Cu^{2+}$ > $Pb^{2+}$ > $Cd^{2+}$ > $Ni^{2+}$ > $Zn^{2+}$의 결과를 보였다.

Keywords

References

  1. Rinaudo, M., "Chitin and Chitosan: Properties and Applications," Prog. Polym. Sci., 31, 603-632(2006). https://doi.org/10.1016/j.progpolymsci.2006.06.001
  2. Ieva, E., Trapani, A., Cioffi, N., Ditaranto, N., Monopoli, A. and Sabbatini, L., "Analytical Characterization of Chitosan Nanoparticles for Peptide Drug Delivery Applications," Anal. Bioanal. Chem., 9, 207-215(2009).
  3. Kataoka, T. and Yoshida, H., "Adsorption of $HgCl_{2}$ on $Cl^−$ Form Anion Exchangers-Equilibrium Isotherm," Chem. Eng. J., 8, 107-114(1988).
  4. Akkaya, G., Uzun, I. and Güzel, F., "Adsorption of Some Highly Toxic Dyestuffs from Aqueous Solution by Chitin and Its Synthesized Derivatives," Desalination, 9, 1115-1123(2009).
  5. Guibal, E., Saucedo, I., Jansson-Charrier, M., Delanghe, B. and Le Cloirec, P., "Uranium and Vanadium Sorption by Chitosan and Derivatives," Water Sci. Technol., 9, 183-190(1994).
  6. Leusch, A., Holan, Z. and Volesky, B., "Biosorption of Heavy Metals(Cd, Cu, Ni, Pb, Zn) by Chemically-Reinforced Biomass of Marine Algae," J. Chem. Technol. Biotechnol., 10, 279-288(1995).
  7. Poo, H., Park, C., Kwak, M.-S., Choi, D.-Y., Hong, S.-P., Lee, I.- H., Lim, Y. T., Choi, Y. K, Bae, S.-R., Uyama, H., Kim, C.-J. and Sung, M.-H., "New Biological Functions and Applications of High-Molecular-Mass Poly-$\gamma$-glutamic Acid," Chemistry Biodiversity, 7, 1555-1562(2010). https://doi.org/10.1002/cbdv.200900283
  8. Ivanovics, G. and Erdos, L., "Ein Beitrag zum Wesen der Kapselsubstanz des Milzbrandbazillus," Z. Immunitatsforsch. 90, 5-19(1937).
  9. Sawamura, S., "On Bacillus natto," J. Coll. Agric. Tokyo, 5, 189-191(1913).
  10. Shih, I.-L. and Van, Y.-T., "The Production of Poly-($\gamma$-glutamic acid) from Microorganisms and Its Various Applications," Biores. Technol., 79, 207-225(2001). https://doi.org/10.1016/S0960-8524(01)00074-8
  11. Sung, M.-H., Park, C., Kim, C.-J., Poo, H., Soda, K. and Ashiuchi, M., "Natural and Edible Biopolymer Poly-$\gamma$-glutamic Acid: Synthesis, Production, and Applications," Chemical Record, 5, 352-366(2005). https://doi.org/10.1002/tcr.20061
  12. Grenha, A., Seijo, B., Serra, C. and Remunan-Lopez, C., "Chitosan Nanoparticle-Loaded Mannitol Microspheres: Structure and Surface Characterization," Biomacromol., 8, 2072-2079(2007). https://doi.org/10.1021/bm061131g
  13. Kawashima, Y., "Nanoparticulate Systems for Improved Drug Delivery," Adv. Drug Deliv. Rev., 47, 1-2(2001). https://doi.org/10.1016/S0169-409X(00)00117-4
  14. Mao, H.-Q., Roy, K., Troung-Le, V. L., Janes, K. A., Lin, K. Y., Wang, Y., August, J. T. and Leong, K. W., "Chitosan-DNA Nanoparticles as Gene Carriers: Synthesis, Characterization and Transfection Efficiency," J. Control. Rel., 70, 399-421(2001). https://doi.org/10.1016/S0168-3659(00)00361-8
  15. Qi, L. and Xu, Z., "Lead Sorption from Aqueous Solutions on Chitosan Nanoparticles," Colloid Surf. A: Physicochem. Eng. Aspects, 251, 183-190(2004). https://doi.org/10.1016/j.colsurfa.2004.10.010
  16. Chang, Y.-C. and Chen, D.-H., "Preparation and Adsorption Properties of Monodisperse Chitosan-bound $Fe_{3}O_{4}$ Magnetic Nanoparticles for Removal of Cu(II) Ions," J. Colloid Interf. Sci., 283, 446-451(2005). https://doi.org/10.1016/j.jcis.2004.09.010
  17. Seo, W.-S., Kim, T.-H., Sung, J.-S. and Song, K.-C., "Synthesis of Silver Nanoparticles by Chemical Reduction Method," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 42, 78-83(2004).
  18. Kim, B. S. and Song, J. Y., in: C. T. Hou and J.-F. Shaw(Ed.) Biocatalysis and Agricultural Biotechnology, CRC Press, 399-407(2009).
  19. Kang, M. K. and Kim, J.-C., "Preparation and Release Property of Alginate Beads Immobilizing Poly(N-isopropylacrylamideco-dimethylamino ethyl methacrylate)," Polym.(Korea), 34, 79-83(2010).
  20. Brady, J. M. and Tobin, J. M., "Binding of Hard and Soft Metal Ions to Rhizopus arrhizus Biomass," Enzyme Microb. Technol., 17, 791-796(1995). https://doi.org/10.1016/0141-0229(95)00142-R
  21. Bhattacharyya, K. G. and Gupta, S. S., "Pb(II) Uptake by Kaolinite and Montmorillonite in Aqueous Medium: Influence of Acid Activation of the Clays," Colloid Surf. A: Physicochem. Eng. Aspects, 277, 191-200(2006). https://doi.org/10.1016/j.colsurfa.2005.11.060
  22. Singh, S. P., Ma, L. Q. and Hendry, M. J., "Characterization of Aqueous Lead Removal by Phosphatic Clay: Equilibrium and Kinetic Studies," J. Hazard. Mater., 36, 654-662(2006).
  23. Srinivasa Rao, P., Vijaya, Y., Boddu, V. M. and Krishnaiah, A., "Adsorptive Removal of Copper and Nickel Ions from Water Using Chitosan Coated PVC Beads," Biores. Technol., 100, 194-199(2009). https://doi.org/10.1016/j.biortech.2008.05.041

Cited by

  1. Selective adsorption for indium(III) from industrial wastewater using chemically modified sawdust vol.29, pp.12, 2012, https://doi.org/10.1007/s11814-012-0069-1
  2. Synthesis of Vegetable Oil-Based Poly(β-amino ester) vol.50, pp.6, 2012, https://doi.org/10.9713/kcer.2012.50.6.1064
  3. 키토산 비드에 고정화된 셀룰라아제의 특성 vol.29, pp.4, 2011, https://doi.org/10.7841/ksbbj.2014.29.4.239
  4. Cu-Zn 금속합금의 산화 환원반응과 Al-Silicate의 흡착반응을 이용한 폐수 중 중금속처리에 관한 연구 vol.33, pp.3, 2011, https://doi.org/10.12925/jkocs.2016.33.3.441
  5. 알긴산 나트륨을 이용한 유산균 캡슐화의 상업화 공정 개발 vol.55, pp.3, 2017, https://doi.org/10.9713/kcer.2017.55.3.313