DOI QR코드

DOI QR Code

Preparation and Characterization of Antimicrobial Films Using Water Soluble Polymer

수용성 고분자를 이용한 항균 필름의 제조 및 특성 연구

  • Choi, Jun Ho (Division of Environmental Engineering College of Engineering Chosun University) ;
  • Choi, Yoo Sung (Department of Bioenvironmental & Chemical Engineering Chosun College University of Science & Technology) ;
  • Oh, Il Hong (Division of Environmental Engineering College of Engineering Chosun University) ;
  • Kim, Maeng Su (B&E Tech Co., Ltd.) ;
  • Lee, In Hwa (Division of Environmental Engineering College of Engineering Chosun University)
  • 최준호 (조선대학교 환경공학과) ;
  • 최유성 (조선이공대학교 생명환경화학공학과) ;
  • 오일홍 (조선대학교 환경공학과) ;
  • 김맹수 ((주)비앤이테크) ;
  • 이인화 (조선대학교 환경공학과)
  • Published : 2011.08.01

Abstract

This study was performed to develop antimicrobial films using polyvinyl alcohol and methyl cellulose. Methyl cellulose and polyvinyl alcohol films plasticized with PEG(polyethylene glycol) were prepared by solvent casting process under addition of 0.025~1.0 wt% ampicillin and 0.1~1.0 wt% streptomycin as an antimicrobial agent. The mechanical properties of prepared films were examined by universal testing machine(UTM). Tensile strength of methyl cellulose films was 15.44~21.70 $N/mm^2$. Tensile strength of PVA(15 wt%) film was 20.2~51.5 $N/mm^2$, and the tensile strength of the antimicrobial films were decreased linearly with increasing the antibiotic loading amount up to 1 wt%. Antimicrobial activities of PVA and methyl cellulose films containing ampicillin and streptomycin through the disc diffusion test for the Staphylococcus aureus and Escherichia coli. The antimicrobial activity of methyl cellulose films and PVA containing ampicillin were higher than that of containing streptomycin methyl cellulose films. The results indicate the films may be a proper materials for antimicrobial packing applications.

본 연구에서는 폴리비닐알코올(Polyvinyl alcohol : PVA)와 메틸셀룰로오스(Methyl cellulose: MC)를 사용하여 항균성을 갖는 필름을 제조하였다. 메틸셀룰로오스와 폴리비닐알코올 필름에 항균성을 부여하기 위해 ampicillin(0.025~1wt%)과 streptomycin(0.1~1.0 wt%)을 첨가하여 함량에 따른 기계적인 물성과 항균활성을 확인하였다. 중합도와 검화도에 따른 PVA 필름의 기계적인 물성을 보면 중합도와 검화정도에 따라 필름의 인장강도가 20.2~51.5 $N/mm^2$이었고, 메틸셀룰로오스 필름의 경우 점도에 따라 15.44~21.70 $N/mm^2$이었다. 사용한 균주와 항균제의 함량정도에 따라 그 기계적인 물성과 항균활성에 차이를 보였지만 함량이 늘어날수록 전체적으로 기계적인 물성은 약간 저하되는 경향을 보였지만 항균필름의 항균활성은 우수하였다. Ampicillin과 streptomycin을 사용하여 제조한 항균필름의 항균활성은 포도상 구균과 대장균을 disc diffusion test로 확인하였다. 메틸셀룰로오스와 폴리비닐알코올 필름 모두 streptomycin보다 ampicillin을 함유할 때 항균활성이 우수한 경향을 보였다.

Keywords

References

  1. DeMerlis, C. C. and Schoneker, D. R., "Review of the Oral Toxicity of Polyvinyl Alcohol(PVA)," Food and Chemical Toxicology, 41, 319-326(2003). https://doi.org/10.1016/S0278-6915(02)00258-2
  2. Young, C. R., Koleng, J. J. and McGinity, J. W., "Production of Spherical Pellets by a Hot-melt Extrusion and Spheronization Process," Inter. J. Pharma., 242, 87(2002). https://doi.org/10.1016/S0378-5173(02)00152-7
  3. Repka, M. A. and McGinity, J. W., "Physical-mechanical, Moisture Absorption and Bioadhesive Properties of Hydroxypropylcellulose Hot-melt Extruded Films," Biomaterials, 21, 1509-1517(2000). https://doi.org/10.1016/S0142-9612(00)00046-6
  4. Kim, U. J., Noriyuki, I., Satoshi, K., Shigenori, K., Masahisa, W., Ko, J. H. and Jin, H. O., "Enzymatic Degradation of Oxidized Cellulose Hydrogels," Polym. Degrad. Stab., Available online 27 september(2010).
  5. Ngoenkam, J., Faikrua, A., Yasothornsrikul, S. and Viyoch, J., "Potential of An Injectable Chitosan/starch/beta-glycerol Phosphate Hydrogel for Sustaining Normal Chondrocyte Function," Int. J. Pharm., 391, 115-124(2010). https://doi.org/10.1016/j.ijpharm.2010.02.028
  6. Zheng, X. and Wilkie, C. A., "Nanocomposites Based on Poly ($\varepsilon$-caprolactone) (PCL)/clay Hybrid: Polystyrene, High Impact Polystyrene, ABS, Polypropylene and Polyethylene," Polym. Degrad. Stab., 82, 441(2003). https://doi.org/10.1016/S0141-3910(03)00197-6
  7. Sakurada, I., "Polyvinyl Alcohol Fibers," Marcel Dekker, N.Y., (1985).
  8. Finch, C. A., "Polyvinyl Alcohol: Development," John Wiley & Sons, N.Y., (1992).
  9. Tao, B. Y., "An Overview of Biodegradable Plastics Technology and Research," ASAE Paper No. 906609(1990).
  10. Quattara, B., Giroux, M., Yefsah, R., Smoragiewicz, W., Saucier, L., Borsa, J. and Lacroix, M., "Microbiological and Biochemical Characteristics of Ground Beef as Affected by Gamma Irradiation, Food Additives and Edible Coating Film," Radiation Phys. Chem., 63, 299-304(2002). https://doi.org/10.1016/S0969-806X(01)00516-3
  11. An, D. S., Kim, Y. M., Lee, S. B., Paik, H. D. and Lee, D. S., "Antimicrobial Low Density Polyethylene Film Coated with Bacteriocins in Binder Medium," Food Sci. Biotechnol., 9, 14-20(2000).
  12. Chung, D., Papadakis, S. E. and Yam, K. L., "Release of Propyl Paraben from a Polymer Coating into Water and Food Simulating Solvents for Antimicrobial Packaging Applications," J. Food Process. Preserv., 25, 71-87(2001). https://doi.org/10.1111/j.1745-4549.2001.tb00444.x
  13. Quattara, B., Simard, R. E., Piette, G., Begin, A. and Holley, R. A., "Inhibition of Surface Spoilage Bacteria in Processed Meats by Application of Antimicrobial Films Prepared with Chitosan," Inter. J. Food Microbiol., 62, 139-148(2000). https://doi.org/10.1016/S0168-1605(00)00407-4
  14. Chen, M. C., Yen, G. H. and Chiang, B. J., "Antimicrobial and Physicochemical Properties of Methylcellulose and Chitosan Films Containing a Preservative," J. Food Process. Preserv., 20, 379-390(1996). https://doi.org/10.1111/j.1745-4549.1996.tb00754.x
  15. Natrajan, N. and Sheldon, B. W., "Efficacy of Nisin-coated Polymer Films to Inactivate Salmonella Typhimurium on Fresh Broiler Skin," J. Food Protec., 63, 1189-1196(2000). https://doi.org/10.4315/0362-028X-63.9.1189
  16. Natrajan, N. and Sheldon, B. W., "Inhibition of Salmonella on Poultry Skin Using Protein and Polysaccharide-based Films Containing a Nisin Formulation," J. Food Protec., 63, 1268-1272 (2000). https://doi.org/10.4315/0362-028X-63.9.1268
  17. Han, J. H. and Floros, J. D., "Casting Antimicrobial Packaging Films and Measuring Their Physical Properties and Antimicrobial Activity," J. Plastic Film Sheeting, 13, 287-298(1997). https://doi.org/10.1177/875608799701300405
  18. Devlieghere, F., Vermeiren, L., Jacobs, M. and Debevere, J., "The Effectiveness of Hexamethylene Tetramine-incorporated Plastic for the Active Packaging of Foods," Packaging Technol. Sci., 13, 117-121(2000). https://doi.org/10.1002/1099-1522(200005)13:3<117::AID-PTS500>3.0.CO;2-B
  19. Amalia, G., Scannell, M., Hill, C., Ross, R. P., Marx, S., Hartmeier, W. and Arendt, E. K., "Development of Bioactive Food Packaging Materials Using Immobilised Bacteriocins Lacticin 3147 and Nisaplin," Inter. J. Food Microbiol., 60, 241-249(2000). https://doi.org/10.1016/S0168-1605(00)00314-7
  20. Kim, Y. H., Park, H. J., Kim, D. M. and Kim, K. H., "Functional Properties of Cellulose-Based Fims," Korean J. Food Sci. Technol. 133-137(1994).

Cited by

  1. 치과용 인상재에서의 클로르헥시딘과 에센셜 오일의 항균성능에 대한 상승효과 vol.56, pp.2, 2011, https://doi.org/10.9713/kcer.2018.56.2.240