References
- Quang, D. T. and Kim, J. S., "Fluoro- and Chromogenic Chemdosimeters for Heavy Metal Ion Detection in Solution and Biospecimens," Chem. Rev., 110, 6280-6302(2010). https://doi.org/10.1021/cr100154p
- Rock, F., Barsan, N. and Weimar, U., "Electronic Nose: Current Status and Future Trends," Chem. Rev., 108, 705-725(2008). https://doi.org/10.1021/cr068121q
- Nath, N. and Chilkoti, A., "Label Free Colorimetric Biosensing Using Nanparticles," Journal of Fluorescence, 14, 377-390(2004). https://doi.org/10.1023/B:JOFL.0000031819.45448.dc
- Drechsler, U., Erdogan, B. and Rotello, V. M., "Nanoparticles : Scaffolds for Molecular Recognition," Chem. Eur. J., 10, 5570-5580(2004). https://doi.org/10.1002/chem.200306076
- Suslick, K. S., "An Optoelectronic Nose : "Seeing" Smells by Means of Colorimetric Sensor Arrays," MRS Bull., 720-726(2004).
- Zhao, W., Brook, M. A. and Li, Y., "Design of Gold Nanoparticle- based Colorimetric Biosensing Assays," Chem. Bio. Chem., 9, 2363-2371(2008). https://doi.org/10.1002/cbic.200800282
- Kim, Y., Johnson, R. C. and Hupp, J. T., "Gold Nanoparticle- Based Sensing of "Spectroscopically Silent" Heavy Metal Ions," Nano Lett., 1, 165-167(2001). https://doi.org/10.1021/nl0100116
- Alizadeh, A., Khodaei, M. M., Karami, C., Workentin, M. S., Shamsipur, M. and Sadeghi, M., "Rapid and Selective Lead (II) Colorimetric Sensor Based on Azacrown Ether-functionalized Gold Nanoparticles," Nanotechnology, 21, 315503-315512(2010). https://doi.org/10.1088/0957-4484/21/31/315503
- Hung, Y. L., Hsiung, T. M., Chen, Y. Y., Huang, Y. F. and Huang, C. C., "Colorimetric Detection of Heavy Metal Ions Using Label- Free Gold Nanoparticles and Alkanethiols," J. Phys. Chem, C, 114, 16329-16334(2010). https://doi.org/10.1021/jp1061573
- Lisowski, C. E. and Hutchison, J. E., "Malonamide-Functionalized Gold Nanoparticles for Selective, Colorimetric Sensing of Trivalent Lanthanide Ions," Anal. Chem., 81, 10246-10253(2009). https://doi.org/10.1021/ac902271t
- Kalluri, J. R., Arbneshi, T., Afrin, K. S., Neely, A., Candice, P., Varisli, B., Washington, M., McAfee, S., Robinson, B., Banerjee, S., Singh, A. K., Senapati, D. and Ray P. C., "Use of Gold Nanoparticle sin a Simple Colorimetric and Ultrasensitive Dynamic Light Scattering Assay : Selective Detection of Arsenic in Groundwater," Angew Chem, 48, 9668-9671(2009). https://doi.org/10.1002/anie.200903958
-
Yao, Y., Tian, D. and Li, H., "Cooperative Binding of Bifunctionalized and Click-Synthesized Silver Nanoparticles for colorimetric
$Co^{2+}$ Sensing," ACS Appl. Mater. Interf., 2, 684-690(2010). https://doi.org/10.1021/am900741h - Palomares, E., Vilar, R. and Durrant, J. R., "Heterogeneous Colorimetric Sensor for Mercuric Salts," Chem. Commun., 362-363 (2004).
- Kada, S., Furui, A., Akiyama, Y., Nakahara, Y. and Kimura, K., "Application of Gold Nanoparticles to Spectrophotometric Sensing of Hydrophillic Anions Based on Molecular Recognition by Urea Derivative," Anaytical Sciences, 25, 261-266(2009). https://doi.org/10.2116/analsci.25.261
- Ai, K., Liu, Y. and Lu, L., "Hydrogen-Bonding Recognition- Induced Color Change of Gold Nanoparticles for Visual Detection of Melamine in Raw Milk and Infant Formula," J. Am. Chem. Soc., 131, 9496-9497(2009). https://doi.org/10.1021/ja9037017
-
Chen, X., Parker, S. G., Zou, G., Su, W. and Zhang, Q., "
$\beta$ -Cyclodextrin- Functionalized Silver Nanoparticles for the Naked eye Detection of Aromatic Isomers," ACS Nano, 4, 6387-6394(2010). https://doi.org/10.1021/nn1016605 -
Huang, J., Xu, Y. and Qian, X., "A Rhodamine-Based
$Hg^{2+}$ Sensor with High Selectivity and Sensitivity in Aqueous Solution: A$NS_{2}$ -Containing Receptor," J. Org. Chem., 74, 2167-2170 (2009). https://doi.org/10.1021/jo802297x - Shunmugam, R., Gabriel, G. J., Smith, C. E., Aamer, K. A. and Tew, G. N., "A Highly Selective Colorimetric Aqueous Sensor for Mercury," Chem. Eur. J., 14, 3904-3907(2008). https://doi.org/10.1002/chem.200701895
-
Huang, J., Xu, Y. and Qian, X., "A Red-shift Colorimetric and Fluorescent Sensor for
$Cu^{2+}$ in Aqueous Solution: Unsymmetrical 4,5-diaminonaphthalimide with N-H Deprotonation Induced by Metal Ions," Org. Biomol. Chem., 7, 1299-1303(2009). https://doi.org/10.1039/b818611a - Guo, Z. Q., Chen, W. Q. and Duan, X. M., "Highly Selective Visual Detection of Cu(II) Utilizing Intramolecular Hydrogen Bond- Stabilized Merocyanine in Aqueous Buffer Solution," Org. Lett., 12, 2202-2205(2010). https://doi.org/10.1021/ol100381g
- Song, F., Garner, A. L. and Koide, K., "A Highly Sensitive Fluorescent Sensor for Palladium Based on the Allylic Oxidative Insertion Mechanism," J. Am. Chem. Soc., 129, 12354-12355(2007). https://doi.org/10.1021/ja073910q
- Yagi, S., Nakamuraa, S., Watanabea, D. and Nakazumi, H., "Colorimetric Sensing of Metal Ions by Bis(spiropyran) Podands: Towards Naked-eye Detection of Alkaline Earth Metal Ions," Dyes and Pigments, 80, 98-105(2009). https://doi.org/10.1016/j.dyepig.2008.05.012
- Gunnlaugsson, T. and Leonard, J. P., "Sythesis and Evaluation of Colorimetric Chemosensors for Monitoring Sodium and Potassium Ions in the Intracellular Concentration Range," J. Chem. Soc., Perkin trans. 2, 1980-1985(2002).
- Jose, D. A., Mishra, S., Ghosh, A., Shrivastav, A., Mishra, S. K. and Das, A., "Colorimetric Sensor for ATP in Aqueous Solution," Org. Lett., 9, 1979-1982(2007). https://doi.org/10.1021/ol0705797
- Qu, Y., Hua, J. and Tian, H., "Colorimetric and Ratiometric Red Fluorescent Chemosensor for Fluoride Ion Based on Diketopyrrolopyrrole," Org Lett., 12, 3320-3323(2010). https://doi.org/10.1021/ol101081m
- Janzen, M. C., Ponder, J. B., Bailey, D. P., Ingison, C. K. and Suslick, K. S., "Colorimetric Sensor Arrays for Volatile Organic Compounds," Anal Chem., 78, 3591-3600(2006). https://doi.org/10.1021/ac052111s
- Fox, S. L., Daum, K. A., Miller, C. J. and Cortez, M. M., "Emergency First Responders' Experence With Colorimetric Detection Methods," Idaho National Laboratory, Oct. 2007.
-
Xu, Z., Pan, J., Spring, D. R., Cui, J. and Yoona, J., "Ratiometric Fluorescent and Colorimetric Sensors for
$Cu^{2+}$ Based on 4,5-Disubstituted-1,8-Naphtalimide and Sensing Cyanide Via$Cu^{2+}$ Displacement Approach," Tetrahedron, 66, 1678-1683(2010). https://doi.org/10.1016/j.tet.2010.01.008 - Yoon, J., Jung, Y. S. and Kim, J. M., "A Combinatorial Approach for Colorimetric Differentiation of Organic Solvents Based on Conjugated Polymer-Embedded Electrospun Fibers," Adv. Funct. Mater., 19, 209-214(2009). https://doi.org/10.1002/adfm.200800963
Cited by
- Colorimetric detection of vesicle rupture by attack of Ag nanoparticles vol.30, pp.1, 2013, https://doi.org/10.1007/s11814-012-0102-4
- Preparation of Dithizone Functionalized Polystyrene for Detecting Heavy Metal Ion vol.53, pp.2, 2015, https://doi.org/10.9713/kcer.2015.53.2.243
- Fluorescence detection of bisphenol A in aqueous solution using magnetite core-shell material with gold nanoclusters prepared by molecular imprinting technique vol.36, pp.9, 2011, https://doi.org/10.1007/s11814-019-0342-7