DOI QR코드

DOI QR Code

Estimation of C(t) -Integral Under Transient Creep Conditions for a Cracked Pipe Subjected to Combined Mechanical and Thermal Loads Depending on Loading Conditions

열응력 및 기계응력이 작용하는 균열배관의 하중조건에 따른 천이 크리프 조건 C(t)-적분 평가

  • Received : 2010.08.20
  • Accepted : 2011.03.03
  • Published : 2011.06.01

Abstract

There is a trend towards the progressive use of higher operating temperatures and stresses to achieve improved efficiencies in power-generation equipment. It is important to perform the crack assessment under hightemperature and high-pressure conditions. The C(t)-integral is a key parameter in crack assessment for transient creep states. The estimation of the C(t)-integral is complex when considering the mechanical and thermal loads simultaneously. In this paper, we study estimation of C(t)-integral under combined mechanical and thermal load depending on loading conditions.

최근 효율을 높이기 위한 플랜드의 환경이 고온, 고압으로 변화함에 따라 열하중과 기계하중을 동시에 반영한 균열 평가는 플랜트의 건전성을 위하여 반드시 필요하다. C(t)-적분은 고온 균열 평가에 있어서 천이 크리프 상태의 균열을 평가하는 중요한 요소이다. 열하중과 기계하중이 동시에 작용하는 환경에서의 C(t)-적분을 예측하는 것은 복잡하며 하중조건이 달라지는 경우에는 더욱더 복잡해진다. 본 논문에서는 열하중과 기계하중의 하중조건이 달라지는 여러 조건에 대한 C(t)-적분 평가식을 제시하였다.

Keywords

References

  1. Webster, G. A. and Ainsworth, R. A., 1994, "High Temperature Component Life Assessment," Chapman & Hall
  2. R5: An Assessment Procedure for the High Temperature Response of Structures. Revision 2, British Energy, 2003.
  3. Webster, G. A. "Methods of Estimating $C^{ast}$, Mater High Temp," 1992; 10: 74-78. https://doi.org/10.1080/09603409.1992.11689404
  4. Riedel H., 1987 Fracture at High Temperatures. Springer-Verlag, Berlin
  5. Miller, A. G. and Ainsworth, R. A., 1989, "Consistency of Numerical Results for Power-Law Hardening Materials and the Accuracy of the Reference Stress Approximation for J," Engineering Fracture Mechanics, Vol. 32, No.2, pp. 233-247. https://doi.org/10.1016/0013-7944(89)90296-8
  6. Kumar, V., Gennan, M. D. and Shih C. F., 1981, "An Engineering Approach for Clastic Plastic Fracture Analysis," EPRI report, No. 1931.
  7. British Energy Generation Ltd., 2007, R6:Assessment of the Integrity of Structures Containing Efects," Rivision oJ
  8. Kim, J. S., Kim, Y. J. and Kim, Y. J., 2002, Estimation of C.-integral for Defective Components with General Creep Deformation Behaviors," Trans. of the KSME(A), Vol. 26, No.5, pp. 795-802. https://doi.org/10.3795/KSME-A.2002.26.5.795
  9. Huh, N. S., Kim, Y. J. and Kim, Y. J., 2003, "Creep Fracture Mechanics Analysis for Through-Wall Cracked Pipes Under Widespread Creep Condition," Trans. of the KSME(A), Vol. 27, No.6, pp. 890-897. https://doi.org/10.3795/KSME-A.2003.27.6.890
  10. Nikbin, K. M., Webster, 0. A. and Turneer, C. E., 1976, "Relevance of Nonlinear Fracture Mechanics to Creep Cracking, Cracks and Fractured," ASTM STP 601, pp. 47-62.
  11. Harper. M. P. and Ellison, E. G., 1977, "The Use of the C. Parameter in Predicting Creep Crack Propagation Rates," Joumal of Strain Analysis, Vol. 12, pp. 167-199. https://doi.org/10.1243/03093247V123167
  12. Riedel, H. and Rice, J. R., 1980, "Tensile Cracks in Creeping Solids," Fracture Mechanics : Twelfth Conference, ASTM STP 700, pp. 112-130.
  13. Ehlers, R. and Riedel, H., 1981, "A Finite Element Analysis of Creep Deformation in a Specimen Containing a Macroscopic Crack," In Proc. Fifth 1m. COIif 011 Fractllre (Ediled by D. Francois), Vol. 2, pp. 691-698, Pergamon Press, Oxford.
  14. Ainsworth, R. A. and Budden, P. J., 1990, "Crack Tip Fields Under Non-Steady Creep Conditions-I. Estimates of the Amplitude of the Fields," Fatigue and Fracture of Engineering Materials and Structures, Vol. 13, No.3, pp. 263-276. https://doi.org/10.1111/j.1460-2695.1990.tb00598.x
  15. Ainsworth, R. A. and Budden, P. J., 1990, "Crack Tip Fields Under Non-Steady Creep Conditions - 11. Estimates of Associated Crack Growth," Fatigue and Fracture of Engineering Materials and Structures, Vol. 13, No.3, pp. 277-285. https://doi.org/10.1111/j.1460-2695.1990.tb00599.x
  16. Kim, Y. J., 2001, "Contour Integral Calculations for Generalized Creep Laws Within ABAQUS," International Journal of Pressure Vessels and Piping, Vol. 78, pp. 661-666 https://doi.org/10.1016/S0308-0161(01)00080-1
  17. Kim, Y. J., Dean, D. W. and Budden, P. J., 2001, "Finite Element Analysis to Assess the Effect of Initial Plasticity on Transient Creep for Defects Under Mechanical Loading," International Journal of Pressure Vessels and Piping, Vol. 78, pp. 1021-1029. https://doi.org/10.1016/S0308-0161(01)00119-3
  18. Joch, J. and Ainsworth, R. A., 1992, "The Development of Creep Singular Fields for Defects in Thermally Loaded Structures," Fatigue and Fracture of Engineering Materials and Structures, Vol. 15, No.7, pp. 685-693. https://doi.org/10.1111/j.1460-2695.1992.tb01306.x
  19. Lei, Y., 2008, "Finite Element RCC-MR Creep Analysis of Circumferentially Cracked Cylinders Under Combined Residual Stress and Mechanical Load," Brilish Energy Report ElREPIBDBBl0017IGENI07, British Energy Generation Limited.
  20. Lei Y., 2005 A Validation of the Newly Extended Method for the Estimation of the Creep Crack Tip Characterising Parameters Using Existing Finite Element Results. British Energy Report E/REP/BDBB/0083/GEN/05, British Energy Generation Limited.
  21. Song, T. K. and Kim, Y. J., 2009, "Estimation of C(t) Integral in Transient Creep Condition for Pipe with Crack Under Combined Mechanical and Thermal Stress (Part I - Elastic creep), Trans. of KSME(A), Vol.33, No.9, pp. 949-956 https://doi.org/10.3795/KSME-A.2009.33.9.949
  22. Song, T. K. and Kim, Y. J., 2009, "Estimation ofC(t)Integral in Transient Creep Condition for Pipe with Crack Under Combined Mechanical and Thermal Stress (Part II - Elastic plastic creep)," Trans. of KSME(A),Vol.33, No.10, pp. 1065-1073 https://doi.org/10.3795/KSME-A.2009.33.10.1065
  23. Song, T. K., Kim, Y. J., Kim, J. S. and Jin, T. E., 2007, "Limit Load and Approximate J-Integral Estimates for Axial-Through Wall Cracked Pipe Bend," Trans. of KSME(A), Vol.31 , No.5, pp. 562-569. https://doi.org/10.3795/KSME-A.2007.31.5.562
  24. Song, T. K., Oh, C. K., Kim, Y. J., Kim, J. S. and Lin, T.E., 2007, "Elastic-Plastic Fracture Mechanics Analyses for Circumferential Part-Through Surface Cracks at the Interface Between Elbows and Pipes," Trans. of KSME(A), Vol. 31, No.6, pp. 710-717. https://doi.org/10.3795/KSME-A.2007.31.6.710
  25. Song, T. K., Oh. C. K. and Kim, Y. J., 2008, "V-Factor Estimation Under Thennal and Mechanical Stress for Circumferentially Cracked Cylinder," Trans. of KSME(A), Vol. 32, No, 12, pp. 1123-1131. https://doi.org/10.3795/KSME-A.2008.32.12.1123
  26. Kim, Y. J., Shim, D. J., Huh, N.S. and Kim, Y. J., 2002, "Plastic Limit Pressures for Cracked Pipes Using Finite Element Limit Analyses," International Journal of Pressure Vessel and Piping, Vol.79, pp. 321-330 https://doi.org/10.1016/S0308-0161(02)00031-5
  27. Kim, Y. J., Shim, D. J., Nikbin. K. and Kim, Y. J., 2003, "Finite Element Based Plastic Limit Loads for Cylinders with Part-Through Surface Cracks Under Combined Loading," International Journal of Pressure Vessel and Piping, Vol.80, pp. 527-540 https://doi.org/10.1016/S0308-0161(03)00106-6
  28. R6, Revision 4, 2006," Assessment of the Integrity of Structures Containing Defects," British Energy Generation Ltd, Gloucester, UK.