DOI QR코드

DOI QR Code

Age Prediction in the Chickens Using Telomere Quantity by Quantitative Fluorescence In situ Hybridization Technique

  • Kim, Y.J. (Department of Animal Science and Biotechnology, Jinju National University) ;
  • Subramani, V.K. (Department of Animal Science and Biotechnology, Jinju National University) ;
  • Sohn, S.H. (Department of Animal Science and Biotechnology, Jinju National University)
  • Received : 2010.05.17
  • Accepted : 2010.09.19
  • Published : 2011.05.01

Abstract

Telomeres are special structures at the ends of eukaryotic chromosomes. Vertebrate telomeres consist of tandem repeats of conserved TTAGGG sequence and associated proteins. Birds are interesting models for molecular studies on aging and cellular senescence because of their slow aging rates and longer life spans for their body size. In this longitudinal study, we explored the possibility of using telomeres as an age-marker to predict age in Single Comb White Leghorn layer chickens. We quantified the relative amount of telomeric DNA in isolated peripheral blood lymphocytes by the Quantitative Fluorescence in situ Hybridization technique on interphase nuclei (IQ FISH) using telomere-specific DNA probes. We found that the amount of telomeric DNA (ATD) reduced significantly with an increase in chronological age of the chicken. Especially, the telomere shortening rates are greatly increased in growing individuals compared to laying and old-aged individuals. Therefore, using the ATD values obtained by IQ FISH we established the possibility of age prediction in chickens based on the telomere theory of aging. By regression analysis of the ATD values at each age interval, we formulated an equation to predict the age of chickens. In conclusion, the telomeric DNA values by IQ FISH analyses can be used as an effective age-marker in predicting the chronological age of chickens. The study has implications in the breeding and population genetics of poultry, especially the reproductive potential.

Keywords

References

  1. Allsopp, R. C., H. Vaziri, C. Patterson, S. Goldstein, E. V. Younglai, A. B. Futcher, C. W. Greider and C. B. Harley. 1992. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA. 89:10114-10118. https://doi.org/10.1073/pnas.89.21.10114
  2. Aviv, A., W. Chen, J. P. Gardner, M. Kimura, M. Brimacombe, X. Cao, S. R. Srinivasan and G. S. Berenson. 2009. Leukocyte telomere dynamics: longitudinal findings among young adults in the Bogalusa Heart Study. Am. J. Epidemiol. 169:323-329.
  3. Baird, D. M. and D. Kipling. 2004. The extent and significance of telomere loss with age. Ann. NY Acad. Sci. 1019:265-268. https://doi.org/10.1196/annals.1297.044
  4. Bize, P., F. Criscuolo, N. B. Metcalfe, L. Nasir and P. Monaghan. 2009. Telomere dynamics rather than age predict life expectancy in the wild. Proc. Biol. Sci. 276:1679-1683. https://doi.org/10.1098/rspb.2008.1817
  5. Blackburn, E. H. 1991. Telomeres. Trends Biochem. Sci. 16:378-381. https://doi.org/10.1016/0968-0004(91)90155-O
  6. Blackburn, E. H., S. Chan, J. Chang, T. B. Fulton, A. Krauskopf, M. McEachern, J. Prescott, J. Roy, C. Smith and H. Wang. 2000. Molecular manifestations and molecular determinants of telomere capping. Cold Spring Harb. Symp. Quant. Biol. 65:253-263. https://doi.org/10.1101/sqb.2000.65.253
  7. Campisi, J., S. H. Kim, C. S. Lim and M. Rubio. 2001. Cellular senescence, cancer and aging: the telomere connection. Exp. Gerontol. 36:1619-1637. https://doi.org/10.1016/S0531-5565(01)00160-7
  8. Cawthon, R. M. 2002. Telomere measurement by quantitative PCR. Nucleic Acids Res. 30:e47. https://doi.org/10.1093/nar/30.10.e47
  9. Cawthon, R. M. 2009. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 37(3):e21. https://doi.org/10.1093/nar/gkn1027
  10. Cawthon, R. M., K. R. Smith, E. O'Brien, A. Sivatchenko and R. A. Kerber. 2003. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361:393-395. https://doi.org/10.1016/S0140-6736(03)12384-7
  11. Cho, E. J., C. H. Choi and S. H. Sohn. 2005. The amount of telomeres and telomerase activity on chicken embryonic cells during developmental stages. J. Anim. Sci. Technol. (Kor) 47:187-794. https://doi.org/10.5187/JAST.2005.47.2.187
  12. Counter, C. M., A. A. Avilion, C. E. LeFeuvre, N. G. Stewart, C. W. Greider, C. B. Harley and S. Bacchetti. 1992. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11:1921-1929.
  13. Delany, M. E., L. M. Daniels, S. E. Swanberg and H. A. Taylor. 2003. Telomeres in the chicken: genome stability and chromosome ends. Poult. Sci. 82:917-926. https://doi.org/10.1093/ps/82.6.917
  14. Forsyth, N. R., W. E. Wright and J. W. Shay. 2002. Telomerase and differentiation in multicellular organisms: turn it off, turn it on, and turn it off again. Differentiation 69:188-197. https://doi.org/10.1046/j.1432-0436.2002.690412.x
  15. Frenck, R. W. Jr., E. H. Blackburn and K. M. Shannon. 1998. The rate of telomere sequence loss in human leukocytes varies with age. Proc. Natl. Acad. Sci. USA. 95:5607-5610. https://doi.org/10.1073/pnas.95.10.5607
  16. Friedrich, U., E. Griese, M. Schwab, P. Fritz, K. Thon and U. Klotz. 2000. Telomere length in different tissues of elderly patients. Mech. Ageing Dev. 119:89-99. https://doi.org/10.1016/S0047-6374(00)00173-1
  17. Harley, C. B. 1995. Telomeres and aging. In Telomeres (Ed. E. H. Blackburn and C. W. Greider). Cold Spring Harbor Laboratory Press, New York.
  18. Harley, C. B., A. B. Futcher and C. W. Greider. 1990. Telomeres shorten during ageing of human fibroblasts. Nature 345:458-460. https://doi.org/10.1038/345458a0
  19. Hastie, N. D., M. Dempster, M. G. Dunlop, A. M. Thompson, D. K. Green and R. C. Allshire. 1990. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346:866-868. https://doi.org/10.1038/346866a0
  20. Hastings, R., N. C. Li, P. S. Lacy, H. Patel, K. E. Herbert, A. G. Stanley and B. Williams. 2004. Rapid telomere attrition in cardiac tissue of the ageing Wistar rat. Exp. Gerontol. 39:855-857. https://doi.org/10.1016/j.exger.2004.02.003
  21. Haussmann, M. F., C. M. Vleck and I. C. Nisbet. 2003. Calibrating the telomere clock in common terns, Sterna hirundo. Exp. Gerontol. 38:787-789. https://doi.org/10.1016/S0531-5565(03)00109-8
  22. Haussmann, M. F., D. W. Winkler and C. M. Vleck. 2005. Longer telomeres associated with higher survival in birds. Biol. Lett. 1:212-214. https://doi.org/10.1098/rsbl.2005.0301
  23. Hewakapuge, S., R. A. van Oorschot, P. Lewandowski and S. Baindur-Hudson. 2008. Investigation of telomere lengths measurement by quantitative real-time PCR to predict age. Leg Med. (Tokyo) 10:236-242. https://doi.org/10.1016/j.legalmed.2008.01.007
  24. Holmes, D. J. and S. N. Austad. 1995. Birds as animal models for the comparative biology of aging: a prospectus. J. Gerontol. A Biol. Sci. Med. Sci. 50:B59-66.
  25. Holmes, D. J., S. L. Thomson, J. Wu and M. A. Ottinger. 2003. Reproductive aging in female birds. Exp. Gerontol. 38:751-756. https://doi.org/10.1016/S0531-5565(03)00103-7
  26. Joeng, K. S., E. J. Song, K. J. Lee and J. Lee. 2004. Long lifespan in worms with long telomeric DNA. Nat. Genet. 36:607-611. https://doi.org/10.1038/ng1356
  27. Jung, G. S., E. J. Cho, D. S. Choi, M. J. Lee, C. Park, I. S. Jeon and S. H. Sohn. 2006. Analysis of telomere length and telomerase activity of tissues in Korean Native Chicken. Kor. J. Poul. Sci. 33:97-103.
  28. Lavoie, E. T. and K. A. Grasman. 2005. Isolation, cryopreservation, and mitogenesis of peripheral blood lymphocytes from chickens (Gallus domesticus) and wild herring gulls (Larus argentatus). Arch. Environ. Contam. Toxicol. 48:552-558. https://doi.org/10.1007/s00244-004-0128-7
  29. McKevitt, T. P., L. Nasir, P. Devlin and D. J. Argyle. 2002. Telomere lengths in dogs decrease with increasing donor age. J. Nutr. 132:1604S-1606S.
  30. McKevitt, T. P., L. Nasir, C. V. Wallis and D. J. Argyle. 2003. A cohort study of telomere and telomerase biology in cats. Am. J. Vet. Res. 64:1496-1499. https://doi.org/10.2460/ajvr.2003.64.1496
  31. Monnier, V. M. 1990. Nonenzymatic glycosylation, the Maillard reaction and the aging process. J. Gerontol. 45:B105-111. https://doi.org/10.1093/geronj/45.4.B105
  32. Moyzis, R. K., J. M. Buckingham, L. S. Cram, M. Dani, L. L. Deaven, M. D. Jones, J. Meyne, R. L. Ratliff and J. R. Wu. 1988. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA. 85:6622-6626. https://doi.org/10.1073/pnas.85.18.6622
  33. Munshi-South, J. and G. S. Wilkinson. 2010. Bats and birds: Exceptional longevity despite high metabolic rates. Ageing Res. Rev. 9:12-19. https://doi.org/10.1016/j.arr.2009.07.006
  34. Nanda, I. and M. Schmid. 1994. Localization of the telomeric (TTAGGG)n sequence in chicken (Gallus domesticus) chromosomes. Cytogenet. Cell Genet. 65:190-193. https://doi.org/10.1159/000133630
  35. Nasir, L., P. Devlin, T. McKevitt, G. Rutteman and D. J. Argyle. 2001. Telomere lengths and telomerase activity in dog tissues: a potential model system to study human telomere and telomerase biology. Neoplasia 3:351-359. https://doi.org/10.1038/sj.neo.7900173
  36. O'Callaghan, N., V. Dhillon, P. Thomas and M. Fenech. 2008. A quantitative real-time PCR method for absolute telomere length. BioTechniques 44:807-809. https://doi.org/10.2144/000112761
  37. Olovnikov, A. M. 1973. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J. Theor. Biol. 41:181-190. https://doi.org/10.1016/0022-5193(73)90198-7
  38. Proctor, C. J. and T. B. Kirkwood. 2002. Modelling telomere shortening and the role of oxidative stress. Mech. Ageing Dev. 123:351-363. https://doi.org/10.1016/S0047-6374(01)00380-3
  39. Ren, F., C. Li, H. Xi, Y. Wen and K. Huang. 2009. Estimation of human age according to telomere shortening in peripheral blood leukocytes of tibetan. Am. J. Forensic Med. Pathol. 30:252-255. https://doi.org/10.1097/PAF.0b013e318187df8e
  40. Salomons, H. M., G. A. Mulder, L. van de Zande, M. F. Haussmann, M. H. Linskens and S. Verhulst. 2009. Telomere shortening and survival in free-living corvids. Proc. Biol. Sci. 276:3157-3165. https://doi.org/10.1098/rspb.2009.0517
  41. Shiels, P. G., A. J. Kind, K. H. Campbell, D. Waddington, I. Wilmut, A. Colman and A. E. Schnieke. 1999. Analysis of telomere lengths in cloned sheep. Nature 399:316-317.
  42. Slijepcevic, P. 2001. Telomere length measurement by Q-FISH. Methods Cell Sci. 23:17-22. https://doi.org/10.1023/A:1013177128297
  43. Sohn, S. H., A. S. Multani P. K. Gugnani and S. Pathak. 2002. Telomere erosion-induced mitotic catastrophe in continuously grown chinese hamster don cells. Exp. Cell Res. 279:271-276. https://doi.org/10.1006/excr.2002.5614
  44. Sohn, S. H., E. J. Cho, W. J. Son and C. Y. Lee. 2007. Diagnosis of bovine freemartinism by fluorescence in situ hybridization on interphase nuclei using a bovine Y chromosome-specific DNA probe. Theriogenology 68:1003-1011. https://doi.org/10.1016/j.theriogenology.2007.06.022
  45. Solovei, I., E. R. Gaginskaya and H. C. Macgregor. 1994. The arrangement and transcription of telomere DNA sequences at the ends of lampbrush chromosomes of birds. Chromosome Res. 2:460-470. https://doi.org/10.1007/BF01552869
  46. Swanberg, S. E. and M. E. Delany. 2005. Differential expression of genes associated with telomere length homeostasis and oncogenesis in an avian model. Mech. Ageing Dev. 126:1060-1070. https://doi.org/10.1016/j.mad.2005.03.022
  47. Taylor, H. A. and M. E. Delany. 2000. Ontogeny of telomerase in chicken: impact of downregulation on pre- and postnatal telomere length in vivo. Dev. Growth Differ. 42:613-621. https://doi.org/10.1046/j.1440-169x.2000.00540.x
  48. Thomas, P., N. J. O'Callaghan and M. Fenech. 2008. Telomere length in white blood cells, buccal cells and brain tissue and its variation with ageing and Alzheimer's disease. Mech. Ageing Dev. 129:183-190. https://doi.org/10.1016/j.mad.2007.12.004
  49. Tsuji, A., A. Ishiko, T. Takasaki and N. Ikeda. 2002. Estimating age of humans based on telomere shortening. Forensic Sci. Int. 126:197-199. https://doi.org/10.1016/S0379-0738(02)00086-5
  50. Vaziri, H., F. Schachter, I. Uchida, L. Wei, X. Zhu, R. Effros, D. Cohen and C. B. Harley. 1993. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am. J. Hum. Genet. 52:661-667.

Cited by

  1. Inheritance and Heritability of Telomere Length in Chicken vol.41, pp.3, 2014, https://doi.org/10.5536/KJPS.2014.41.3.217
  2. Dynamics of telomere length in the chicken vol.70, pp.04, 2014, https://doi.org/10.1017/S0043933914000804
  3. Does Reproductive Investment Decrease Telomere Length in Menidia menidia? vol.10, pp.5, 2015, https://doi.org/10.1371/journal.pone.0125674
  4. The Impact of Bacillus subtilis KATMIRA1933 Supplementation on Telomere Length and Mitochondrial DNA Damage of Laying Hens pp.1867-1314, 2018, https://doi.org/10.1007/s12602-018-9440-9
  5. Effect of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 on the productivity, reproductive aging, and physiological characteristics of hens and roosters vol.10, pp.4, 2011, https://doi.org/10.3920/bm2018.0149
  6. Telomere Length and Regulatory Genes as Novel Stress Biomarkers and Their Diversities in Broiler Chickens (Gallus gallus domesticus) Subjected to Corticosterone Feeding vol.11, pp.10, 2011, https://doi.org/10.3390/ani11102759