DOI QR코드

DOI QR Code

Numerical Analysis of Pressurized Air Flow and Acting Wave Pressure in the Wave Power Generation System Using the Low-Reflection Structure with Wall-Typed Curtain

저반사구조물을 이용한 파력발전에 있어서 압축공기흐름 및 작용파압에 관한 수치해석

  • Lee, Kwang-Ho (Department of Civil Engineering, School of Engineering, Nagoya University) ;
  • Choi, Hyun-Seok (Department of Civil Engineering, Korea Maritime University) ;
  • Kim, Chang-Hoon (Department of Civil Engineering, Korea Maritime University) ;
  • Kim, Do-Sam (Department of Civil Engineering, Korea Maritime University) ;
  • Cho, Sung (Department of Civil Engineering, Korea Maritime University)
  • 이광호 ((일) 나고야대학교 공학연구과 사회기반공학) ;
  • 최현석 (한국해양대학교 토목공학과) ;
  • 김창훈 (한국해양대학교 토목공학과) ;
  • 김도삼 (한국해양대학교 토목공학과) ;
  • 조성 (한국해양대학교 토목공학과)
  • Received : 2011.03.05
  • Accepted : 2011.04.05
  • Published : 2011.04.29

Abstract

Recently, many studies have been attempted to save the cost of production and to build the ocean energy power generating system. The low-reflection structure with the wall-typed curtain which has a wave power generation system of OWC is known as the most effective energy conversion system. A three-dimensional numerical model was used to understand the characteristics of velocity of flows about compressed air and to estimate the pressure acting on the low-reflection structure due to the short-period waves. The three-dimensional numerical wave flume which is the model for the immiscible two-phase flow was applied in interpretation for this. The numerical simulation showed well about the changes in velocity of compressed air and the characteristics of pressure according to the change in the wave height and depth of the curtain wall. Additionally, the results found that there was the point of the maximum velocity of the compressed air when the reflection coefficient is at its lowest point.

최근 생산비용을 절감하고 고밀도의 해양에너지발전시스템을 구축하기 위한 다양한 접근이 시도되고 있다. 본 연구에서는 방재와 파랑에너지의 이용이라는 두 목적을 달성하기 위하여 가장 효율적인 에너지의 변환시스템으로 널리 알려져 있는 파력발전장치인 진동수주형(OWC, Oscillating Water Column) 파력발전시스템을 적용한 curtain식 저반사구조물에 대해 단주기파랑의 작용하에서 공기터빈에 직접 작용하는 압축공기의 흐름속도와 구조물에 작용하는 파압에 관한 특성을 3차원수치실험으로부터 검토한다. 해석에서는 기체와 액체의 혼상동적현상을 동일한 지배방정식으로 해석하는 이상류(二相流) 수치모델에 기초한 3차원수치파동수로를 적용하였다. 이로부터 입사파고의 변화와 curtain wall의 침수심에 따른 압축공기의 속도변화 및 작용파압의 특성을 확인하였고, 더불어 반사율이 최소가 되는 주기에서 압축공기의 최대속도가 발생하는 것을 확인하였다.

Keywords

References

  1. 염승현 (2003). 커튼식 저반사구조물의 파랑제어효과에 대한 CADMAS-SURF의 적용성에 관한 연구. 석사학위논문, 한국해양대학교.
  2. 유창일, 박정현, 김헌태, 윤한삼, 윤상준 (2009). 파력발전 적지기장 해역과 동해 해상부이 파랑관측치 비교. 한국마린엔지니어링학회지, 33(1), 166-174.
  3. 조일형 (2002). 원통형 진동수주 파력발전장치에 의한 파 에너지 흡수. 한국해안해양공학회지, 14(1), 8-18.
  4. Akiyama, M. and Aritomi, M. (2002). Advanced numerical analysis of two-phase flow dynamics multi-dimensional flow analysis. Corona Publishing Co., LTD. Tokyo, Japan.
  5. Amsden, A.A. and Harlow, F.H. (1970). The SMAC method : a numerical technique for calculating incompressible fluid flow. Los Alamos Scientific Laboratory Report LA-4370, Los Alaomos, N.M.
  6. Hirt, C. W and Nichols, B.D. (1981). Volume of fluid(VOF) method for the dynamics of free boundaries. J. of Comput. Phys., 39, 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  7. Kunugi, T. (2000). MARS for multiphase calculation. CFD J., 9(1), IX-563.
  8. Miyata, H. and Nishimura, S. (1985). Finite-difference simulation of nonlinear waves generated by ships of arbitrary three-dimensional configuration. J. Comput. Phys., 60, 391-436. https://doi.org/10.1016/0021-9991(85)90028-2
  9. Lesieur, M., Metais, O. and Comte, P. (2005). Large-eddy simulations of turbulence. Cambridge Univ. Press, New York, N.Y..
  10. Rudman, J.D. (1997). Volume-tracking methods for interfacial flow calculations. Int. J. Numer. Methods in Fluids, 24, 671-691. https://doi.org/10.1002/(SICI)1097-0363(19970415)24:7<671::AID-FLD508>3.0.CO;2-9
  11. Smagorinsky, J. (1963). General circulation experiments with the primitive equations. Mon, Weath. Rev., 91(3), 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  12. Tome, M.F. and McKee, S. (1994). GENSMAC : A computational marker and cell method for free-surface flows in general domains. J. of Comput. Phys., 110, 171-186. https://doi.org/10.1006/jcph.1994.1013
  13. 中村孝幸 (1999). 透過波の反射波の低減を可能にする力一テン防波堤の構造型式について. 海岸工學論文集, 第46卷, 786-790.
  14. 中村孝幸, 大村智宏, 大井邦昭 (2003). 渦流制御を利用する海水交換促進型防波堤の效果について. 海岸工學論文集, 第50卷, 806-810.

Cited by

  1. Dynamic Response Analysis of Pressurized Air Chamber Breakwater Mounted Wave-Power Generation System Utilizing Oscillating Water Column vol.26, pp.4, 2014, https://doi.org/10.9765/KSCOE.2014.26.4.225
  2. Dynamic Response Analysis of Pneumatic Floating Breakwater Mounted Wave-power Generation System of Oscillating Water Column vol.29, pp.6, 2017, https://doi.org/10.9765/KSCOE.2017.29.6.305