DOI QR코드

DOI QR Code

가속형 다침전극의 이온풍 특성 연구

A Study on Ion Wind Characteristics of Acceleration Type Multipoint Electrode

  • 김진규 (경북대학교 산업전자전기공학부)
  • 투고 : 2011.03.28
  • 심사 : 2011.04.13
  • 발행 : 2011.05.31

초록

In this paper, after an acceleration typed ion wind generator which could format strong electric field in air was manufactured and installed, the effects of the electrode configuration and distance of acceleration type ion wind generator with triangle structure on the ion wind generation characteristics were investigated. As a result, the ion wind generator with curvature multipoint electrode could generate higher ion wind velocity and ion wind generation yield than others with multipoint electrode, curvature line electrode, line electrode structure. The ion wind generator with curvature multipoint electrode showed a peak ion wind velocity of 1.33[m/s] at 19.0[kV] and a ion wind generation yield of 0.12[m/Ws] at 15.0[kV].

키워드

참고문헌

  1. Eric Moreau and G. Touchard, “Enhancing the mechanical efficiency of electric wind in corona discharge”, Journal of Electrostatics, Vol. 66, Issues 1-2, pp.39-44, 2008. https://doi.org/10.1016/j.elstat.2007.08.006
  2. F. Yang, N.E. Jewell-Larsen, D.L. Brown, K. Pendergrass, D.A. Parker, I.A. Krichtafovitch, and A.V. mamishev, “Corona driven air propulsion for cooling of electronics”, Ⅷth Intern. Sympos. High Voltage Engineering, pp.1-4, 2003.
  3. E. Moreau, C. Louste and G. Touchard, “Electric wind by sliding discharge in air at atmosphere pressure”, Journal of Electrostatics, Vol. 66, Issues 1-2, pp.107-114, 2008. https://doi.org/10.1016/j.elstat.2007.08.011
  4. H. kalman, E. Sher, “Enhancement of heat transfer by means of a corona wind created by a wire electrode and confined wings assembly”, Applied Thermal Engineering, Volume 21, No. 3, pp.265-282, 2001. https://doi.org/10.1016/S1359-4311(00)00038-7
  5. N. Balcon, N. Benard, E. Moreau, “Formation process of the electric wind produced by a plasma actuator”, IEEE Transaction on Dielectrics and Electrical Insulation, Vol. 16, No. 2, pp.463-469, 2009. https://doi.org/10.1109/TDEI.2009.4815179
  6. J.-D. Moon, D.-H. Hwang, J.-S. Jung, J.-G. Kim and S.-T. Geum, “A Sliding Discharge-type EHD gas Pump Utilizing a Saw-Toothed-plate discharge electrode”, Journal of Electrostatics, Vol. 17, No. 3, pp.742-747, 2010.
  7. R. Sosa, E. Arnaud, E. Memin and G. Artana, “Study of the flow induced by a sliding discharge”, IEEE Transaction on Dielectrics and Electrical Insulation, Vol. 16, No. 2, pp.305-311, 2009 https://doi.org/10.1109/TDEI.2009.4815157
  8. R. Sosa, H. Kelly, D. Grondona, A. Márquez, V. Lago and G. Artana, “Electrical and plasma characteristics of a quasi-steady sliding discharge”, Journal of Physics D: Appl. Phys, Vol. 41, No. 3, pp.107-114, 2008. https://doi.org/10.1051/epjap:2008005
  9. L. Zhao and K. Adamiak, “EHD flow in air produced by electric corona discharge in pin-plate configuration”, Journal of Electrostatics, Vol. 63, Issues 3-4, pp.337-350, 2005. https://doi.org/10.1016/j.elstat.2004.06.003
  10. F. C. Lai and R. K. Sharma, “EHD-enhanced drying multiple needle electrode”, Journal of Electrostatics, Vol. 63, Issues 3-4, pp.223-237, 2005. https://doi.org/10.1016/j.elstat.2004.10.004