DOI QR코드

DOI QR Code

The Design and Modeling of a Reconfigurable Inset-Fed Microstrip Patch High Gain Antenna for Wireless Sensor Networks

  • Received : 2010.11.17
  • Accepted : 2011.02.18
  • Published : 2011.05.31

Abstract

In this paper, we designed a tunable microstrip patch antenna using RF MEMS switches. The design and simulation of the antenna were performed using a high frequency structure simulator(HFSS). The antenna was designed for use in the ISM band and either operates at 2.4 GHz or 5.7 GHz achieving -10 dB return-loss bandwidths of 20 MHz and 180 MHz, respectively. In order to obtain high efficiency and improve the ease of integration, a high resistivity silicon(HRS) wafer on a glass substrate was used for the antenna. The antenna achieved high gains: 8 dB at 5.7 GHz and 1 dB at 2.4 GHz. The RF MEMS DC contact switches were simulated and analyzed using ANSYS software.

Keywords

References

  1. P. M. Mendes, M. Bartek, J. N. Burghartz, and J. H. Correia, "Novel very small dual-band chip size antenna for wireless sensor networks", Proc. IEEE RAWCON, pp. 419-422, Atlanta, USA, 2004. https://doi.org/10.1109/RAWCON.2004.1389165
  2. P. M. Mendes, A. Polyakov, M. Bartek, J. N. Burghartz, and J. H. Correia "Integrated 5.7 GHz chip size antenna for wireless sensor network", Transducers'03, pp. 49-52, Boston, USA, 2003.
  3. W.-S. Yoon, S.-M. Han, D.-H. Lee, K.-J. Lee, S. Pyo, and Y.-S. Kim, "A reconfigurable circularly polarized microstrip antenna on a cross-shape slotted ground", Journal of the Korea Electromagnetic Engineering Society, vol. 21, no. 1, pp. 46-52, 2010. https://doi.org/10.5515/KJKIEES.2010.21.1.046
  4. M. Maddela, R. Ramadoss, and R. Lempkowski, "A MEMS-based tunable coplanar patch antenna fabricated using PCB processing techniques", Journal of Micromech. and Microeng., vol. 17, pp. 812-819, 2007. https://doi.org/10.1088/0960-1317/17/4/019
  5. R. N. Simons, D. Chun, and L. P. B Katehi, "Microelectromechanical systems(MEMS) actuators for antenna reconfigurability", NASA Research Report, NASA CR-2001-210612, 2001.
  6. K. Topalli, O. A. Civi, S. Demir, S. Koc, and T. Akin, "Dual-frequency reconfigurable slot dipole array with a CPW-based feed network using RF MEMS technology for X-and Ka band application", Antennas and Propagation International Symposium, ISBN: 978-1-4244-0877-1, pp. 825-828, 2007.
  7. P. Blondy, D. Bouyge, A. Crunteanu, and A. Pothier, "A wide tuning range MEMS switched patch antenna", Microwave Symposium Digest, IEEE MTT-S International, pp. 152-154, 2006. https://doi.org/10.1109/MWSYM.2006.249417
  8. W. Pan, S.-Z. Wu, and Y. Chen, "Micromachined patch antennas on synthesized substrates", International Conference on Mirowave and Milimeter Wave Technology Proceedings, pp. 58-61, 2004.
  9. P. Sharma, S. K. Koul, and S. Chandra, "Micromachined inset-fed patch antenna at Ka-band", Proceedings of Asia Microwave Pacific Conference(APMC-2006), pp. 12-15, Yokohama, Japan, 2006.
  10. H. Fang, Z. Jian, Y. Yuan-wei, and W. Jing, "Milimeter-wave design of aperture-coupled micromachined patch antennas", ICMMT 2008 Proceedings, pp. 1401-1404, April 2008.
  11. Design Inset-Fed Microstrip Patch Antenna, www.mwrf.com.
  12. Coplanar wave guide calculator, www.microwaves101.com.
  13. Gabriel M. Rebeiz, RF MEMS theory, design, and technology, John Wiley & Son, ISBN: 0-471-20169-3, p. 38.