DOI QR코드

DOI QR Code

침수식생 개수로에서 난류 및 부유사 이동 특성

Characteristics of Turbulent Flows and Suspended Sediment Transport in Open-channel with Submerged Vegetation

  • 양원준 ((주)한국전력기술 토목건축기술그룹) ;
  • 장지연 (연세대학교 대학원 토목환경공학과) ;
  • 최성욱 (연세대학교 토목환경공학과)
  • 투고 : 2011.02.23
  • 심사 : 2011.05.26
  • 발행 : 2011.05.31

초록

침수식생 개수로 흐름은구조적으로상부영역과식생영역으로구분되는데, 상부영역은 일반 개수로의 흐름특성을 보이며 식생영역은 줄기에 의해 난류가 억제되어 정수식생 조건의 흐름과 유사하게 단순한 흐름특성을 보인다. 본 논문은 침수식생 개수로 흐름의 난류 및 유사이동 특성에 관한 실험연구이다. 이를 위해 폭 0.5m, 길이 12m인 개수로 실험장치를 이용하여수리실험을 실시하였다. 다양한 유량에 대하여 수심비 2~3인 흐름을 구현하였고, 나무원형 실린더를 이용하여 식생을 재현하였다. 평형상태에서 부유사 농도 분포를 측정하기 위해서중앙입경이 75 ${\mu}M$인 모래를 한계조건에 도달하기까지 지속적으로 투입하였다. 유속 성분의 계측을 위하여 레이저 도플러 유속계를 사용하였고, 튜브를 이용한 사이포닝 방식으로 시료를 직접 채취하여 부유사 농도를 측정하였다. 측정된 자료를 이용하여 실험조건에 따른 평균흐름과 난류량의 특성을 살펴보았고, Rouse 수에 따른 부유사 농도 분포를 제시하였다.

The open-channel flow with submerged vegetation shows distinct features in two separate regions, namely upper and vegetation layers. In the upper layer, the flow is akin to the open-channel flow, while the flow in the vegetation layer is relatively uniform with suppressed turbulence due to vegetation stems. This paper presents laboratory experiments to investigate the characteristics of turbulent flows and suspended sediment transport in open-channel flows with submerged vegetation. An open-channel facility, 0.5 m wide and 12 m long, was used for laboratory experiments. Various discharges were employed with depth ratios of 2~3, and wooden cylinders were used for vegetation. To make equilibrium suspension, sediment particles of median diameter of 75 ${\mu}M$ were fed until capacity condition. Laser Doppler velocimeter was used to measure instantaneous velocity, and direct sampling with vinyl tube was used to measure the concentration of suspended sediment. Using the sampled data, the mean flow and turbulence structures were provided and characteristics of suspended sediment concentration with Rouse number were presented.

키워드

참고문헌

  1. Cellino, M., and Graf, W.H. (1999). "Sediment-laden flow in open-channel under noncapacity and capacity conditions." Journal of Hydraulic Engineering, ASCE, Vol. 125, No. 5, pp. 455-462.
  2. Choi, S.-U., and Kang, H. (2004). "Reynolds stress modeling of vegetated open-channel flows." Journal of Hydraulic Research, IAHR, Vol. 42, No. 1, pp. 3-11. https://doi.org/10.1080/00221686.2004.9641178
  3. Choi, S.-U., and Kang, H. (2006). "Numerical investigations of mean flow and turbulence structures of partly vegetated open channel flows using the Reynolds stress model." Journal of Hydraulic Research, IAHR, Vol. 44, No. 2, pp. 203-217. https://doi.org/10.1080/00221686.2006.9521676
  4. Dietrich, W.E. (1982). "Settling velocities of natural particles." Water Resources Research, AGU, Vol. 18, No. 6, pp. 1615-1626. https://doi.org/10.1029/WR018i006p01615
  5. Huai, W.X., Zeng, Y.H., Xu, Z.G., and Yang, Z.H. (2009). "Three-layer model for velocity distribution in open channel flow with submerged rigid vegetation." Advances in Water Resources, Vol. 32, No. 4, pp. 487-492. https://doi.org/10.1016/j.advwatres.2008.11.014
  6. Jordanova, A.A., and James, C.S. (2003). "Experimental study of bed load transport through emergent vegetation." Journal of Hydraulic Engineering, ASCE, Vol. 129, No. 6, pp. 474-478.
  7. Lopez, F., and Garcia, M. (2001). "Mean flow and turbulence structure of open channel flow through non-emergent vegetation." Journal of Hydraulic Engineering, ASCE, Vol. 127, No. 5, pp. 392-402.
  8. Nepf, H.M., and Vivoni, E.R. (1999). "Turbulence structure in depthlimited, vegetated flow: Transition between emergent and submerged regimes." 28th IAHR congress, Graz, Austria.
  9. Nepf, H.M., and Vivoni, E.R. (2000). "Flow structure in depth-limited, vegetated flow." Journal of Geophysical Research, AGU, Vol. 105, No. C12, pp. 28547-28557. https://doi.org/10.1029/2000JC900145
  10. Righetti, M., and Armanini, A. (2002). "Flow resistance in open channel flows with sparsely distributed bushes." Journal of Hydrology, Vol. 269, No. 1-2, pp. 55-64. https://doi.org/10.1016/S0022-1694(02)00194-4
  11. Simon, A., Bennett, S.J., and Neary, V. (2004). "Riparian vegetation and fluvial geomorphology: problems and opportunities." in Riparian Vegetation and Fluvial Geomorphology (edited by S.J. Bennett and A. Simon), AGU, Washington DC.
  12. Tollner, E.W., Bairfield, B.J., Vachirakornwatana, C., and Haan, C.T. (1977). "Sediment deposition patterns in simulated grass filters." Transactions of ASCE, Vol. 20, No. 5, pp. 940-944.
  13. Tollner, E.W., Bairfield, B.J., and Hayes, J.C. (1982). "Sedimentology of erect vertical filters." Journal of the Hydraulics Division, ASCE, Vol. 108, No. HY12, pp. 1518-1531.
  14. Tsujimoto, T. (1999). "Fluvial processes in streams with vegetation." Journal of Hydraulic Research, IAHR, Vol. 37, No. 6, pp. 789-803.
  15. Tusjimoto, T., Kitamura, T., and Okada, T. (1991). "Turbulent structure of flow over rigid vegetation covered bed in open-channels." KHL Progressive Report 1, Hydr. Lab., Kanazawa University, Japan.
  16. Woo, H. (2010). "Trends in ecological river engineering in Korea." Journal of Hydro-environment Research, IAHR-APD, Vol. 4, No. 4, pp. 269-278. https://doi.org/10.1016/j.jher.2010.06.003
  17. Yang, W., and Choi, S.-U. (2009). "Impact of stem flexibility on mean flow and turbulence structure in depth-limited open channel flows with submerged vegetation." Journal of Hydraulic Research, IAHR, Vol. 47, No. 4, pp. 445-454. https://doi.org/10.1080/00221686.2009.9522020
  18. Yang, W., and Choi, S.-U. (2010). "A two-layer approach for depth-limited open-channel flows with submerged vegetation." Journal of Hydraulic Research, IAHR, Vol. 48, No. 4, pp. 466-475. https://doi.org/10.1080/00221686.2010.491649