DOI QR코드

DOI QR Code

Real-time Discharge Measurement of the River Using Fixed-type Surface Image Velocimetry

고정식 표면영상유속계 (FSIV)를 이용한 실시간 하천 유량 산정

  • Received : 2011.02.14
  • Accepted : 2011.05.02
  • Published : 2011.05.31

Abstract

Surface Image Velocimetry (SIV) is a recently-developed discharge measurement instrument. It uses image processing techniques to measure the water surface velocity and estimate water discharge with given cross section. The present study aims to implement a FSIV (Fixed-type Surface Image Velocimetry) at Soojeon Bridge in the Dalcheon. The hardware system consists of two digital cameras, a computer, and a pressure-type water stage gauge. The images taken with the hardware system are sent to a server computer via a wireless internet, and analyzed with a image processing software (SIV software). The estimated discharges were compared with the observed discharges through Goesan dam spillway and index velocity method using ADVM. The computed results showed a good agreement with the observed one, except for the night time. The results compared with discharges through Goesan dam spillway reached around 5~10% in the case of discharge over 30 m3/s, and the results compared with discharges through index velocity method using ADVM reached around 5% in the case of discharge over 200 $m^3/s$. Considering the low cost of the system and the visual inspection of the site situation with the images, the SIV would be fairly good way to measure water discharge in real time.

표면영상유속계(SIV)는 영상 분석 기법을 이용하여 하천의 표면유속을 측정하고, 이를 토대로 유량을 산정하는 시스템이다. 본 연구에서는 고정식 표면영상유속계(FSIV) 시스템을 달천 수전교에 설치하여 실시간으로 연속적인 유량 측정을 실시하였다. 수전교에 적용된 FSIV의 하드웨어 시스템은 영상 획득을 위한 2대의 디지털 카메라와 컴퓨터, 그리고 수위 측정을 위한 초음파 수위계로 구성된다. 이 현장 장비들에서 획득된 실시간 영상과 수위 자료는 무선인터넷을 이용하여 실시간으로 홈페이지에 전송되며, 표면영상유속분석 소프트웨어를 이용하여 유량을 산정한다. FSIV에 의한 유량산정 결과는 직상류의 괴산댐 방류량과 FSIV와 동일한 지점에 설치된 Acoustic Doppler Velocity Meter (ADVM)를 설치한 후 유속지수법으로 산정된 유량과 비교하여 검토하였다. 댐 방류량과 비교한 결과 30$m^3/s$ 이상의 유량에서는 대부분 5~10%의 오차를 보였으며, ADVM을 이용하여 측정된 유량과 비교한 결과는 약 200$m^3/s$ 이상의 유량에서는 오차가 약 5 % 이내로 확인되었다. FSIV의 설치 경비와 운용에 드는 비용과 인력을 감안한다면, FSIV는 실시간으로 유량을 관측할 수 있는 좋은 대안이 될 것으로 판단된다.

Keywords

References

  1. 김서준, 윤병만, 류권규, 주용우(2007). "LSPIV기법을 이용한 탄천(대곡교) 유량 측정." 한국수자원학회 학술발표대회, 한국수자원학회, pp. 911-915.
  2. 김용전, 이찬주, 김동구, 김원(2009). "유속지수법을 이용한 자동유량측정." 한국수자원학회 학술발표대회, 한국수자원학회, pp. 1845-1849.
  3. 노영신, 김영근, 윤병만(2004). "LSPIV를 이용한 표면유속 측정기법의 검증 및 적용." 한국수자원학회논문집, 한국수자원학회, 제37권, 제2호, pp. 155-161. https://doi.org/10.3741/JKWRA.2004.37.2.155
  4. 노영신(2005). 영상해석기술을 이용한 하천유량 측정기법 개발. 명지대학교 토목환경공학과, 박사학위논문.
  5. 노영신, 윤병만, 류권규(2005). "표면유속을 이용한 평균 유속 추정방법의 개발." 한국수자원학회논문집, 한국수자원학회, 제38권, 제11호, pp. 917-925.
  6. 윤병만, 노영신, 김영근, 류권규(2002). "개수로 실험장치를 이용한 LSPIV기법의 검증." 한국수자원학회 학술발표회, 한국수자원학회, pp. 982-988.
  7. 木下良作(1984) "航空写真による洪水流解析の現状と今後の課題", 土木学会論文集, No. 345/II-1, pp. 1-19. (일본어)
  8. 藤田一郎, 河村三郎(1994) "ビデオ画像解析による河川表 面流計測の試み", 水工学論文集, Vol. 38, pp. 733-738. (일본어)
  9. Cheng, R.T., and Gartner, J.W. (2003). "Complete velocity distribution in river cross-sections measured by acoustic instruments." Proceedings of the IEEE/DES 7th Working Conference in Current Measurement Technology, pp. 21-26. https://doi.org/10.1109/CCM.2003.1194276
  10. Costa, J.E., Spicer, K.R., Cheng, R.T., Peter Haeni, F., Melcher, N.B., and Michael Thurman, E. (2000). "Measuring stream discharge by noncontact methods: A proof of concept experiment." Geophys. Res. Letter, Vol. 27, No. 4, pp. 553-556 https://doi.org/10.1029/1999GL006087
  11. Dramais, G., Le Coz, J., Camenen, B., and Hauet, A. (2011). "Advantages of a mobile LSPIV method for measuring flood discharges and improving stagedischarge curves." Journal of Hydro-environment Research (in Press).
  12. Fujita, I., Muste, M., and Kruger, A. (1998). "Large-scale particle image velocimetry for flow analysis in hydraulic engineering application." Journal ofHydraulic Research, IAHR, Vol. 36, No. 3, pp. 397-414.
  13. Hauet, A., Kruger, A., Krajewski, W.F., Bradley, A., Muste, M., and Creutin, J.D. (2008). "Experimental system for real-time discharge estimation using an image-based method." Journal of Hydrological Engineering, Vol. 13, No. 2, pp. 105-110. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:2(105)
  14. Le Coz, J., Hauet, A., Pierrefeu, G., Dramais, G., and Camenen, B. (2010). "Performance of image-based velocimetry (LSPIV) applied to flash-flood discharge measurements in Mediterranean rivers." Journal of Hydrology, Vol. 394, No. 1-2, pp. 42-52. https://doi.org/10.1016/j.jhydrol.2010.05.049
  15. Raffel, M., Willert, C., Wereley, S., and Kompenhans, J. (2007). Particle image velocimetry, a Practical Guide, Springer.
  16. Rantz, S.E. (1982a). "Measurement and computation of streamflow: Volume 1. Measurement of stage and discharge." Water-Supply Paper 2175. U.S. Geological Survey.
  17. Rantz, S.E. (1982b). "Measurement and computation of streamflow: Volume 2. Computation of discharge." Water-Supply Paper 2175. U.S. Geological Survey.
  18. Stevens, C., and Coates, M. (1994). "Application of a maximized cross-correlation technique for resolving velocity fields in laboratory experiments." Journal of Hydraulic Research, Vol. 32, No. 2, pp. 195-212. https://doi.org/10.1080/00221686.1994.10750035

Cited by

  1. Development of High-performance Microwave Water Surface Current Meter for General Use to Extend the Applicable Velocity Range of Microwave Water Surface Current Meter on River Discharge Measurements vol.48, pp.8, 2015, https://doi.org/10.3741/JKWRA.2015.48.8.613
  2. Development of a real-time surface image velocimeter using an android smartphone vol.49, pp.6, 2016, https://doi.org/10.3741/JKWRA.2016.49.6.469
  3. Calculation of the Flood Runoff of the River with Imaging Equipments vol.23, pp.4, 2014, https://doi.org/10.5322/JESI.2014.4.585
  4. Error Analysis of Image Velocimetry According to the Variation of the Interrogation Area vol.46, pp.8, 2013, https://doi.org/10.3741/JKWRA.2013.46.8.821
  5. Error Analysis for Electromagnetic Surface Velocity and Discharge Measurement in Rapid Mountain Stream Flow vol.23, pp.4, 2014, https://doi.org/10.5322/JESI.2014.4.543
  6. Flood Runoff Calculation using Disaster Monitoring CCTV System vol.23, pp.4, 2014, https://doi.org/10.5322/JESI.2014.4.571
  7. Flood Runoff Measurements using Surface Image Velocimetry vol.22, pp.5, 2013, https://doi.org/10.5322/JESI.2013.22.5.581
  8. Comparative Analysis of Day and Night Time Video Accuracy to Calculate the Flood Runoff Using Surface Image Velocimeter (SIV) vol.24, pp.4, 2015, https://doi.org/10.5322/JESI.2015.24.4.359
  9. Measurement of Two-Dimensional Velocity Distribution of Spatio-Temporal Image Velocimeter using Cross-Correlation Analysis vol.47, pp.6, 2014, https://doi.org/10.3741/JKWRA.2014.47.6.537
  10. Evaluation of Far Infrared Camera for Surface Image Velocimeter Versatile in Day and Night Measurement vol.48, pp.8, 2015, https://doi.org/10.3741/JKWRA.2015.48.8.659
  11. Development of Microwave Water Surface Current Meter for General Use to Increase Efficiency of Measurements of River Discharges. vol.47, pp.3, 2014, https://doi.org/10.11614/KSL.2014.47.3.225
  12. Correlation analysis of spatio-temporal images for estimating two-dimensional flow velocity field in a rotating flow condition vol.529, 2015, https://doi.org/10.1016/j.jhydrol.2015.08.005
  13. Development and Evaluation of Automatic Discharges Measurement Technology for Small Stream Monitoring vol.18, pp.6, 2018, https://doi.org/10.9798/KOSHAM.2018.18.6.347