DOI QR코드

DOI QR Code

The Effects of D-Ribose Supplementation on the Production of Blood Fatigue Factors after Maximal Intensity Exercise

리보오스 보충이 최대강도 운동 후 혈중 피로물질 생성에 미치는 영향

  • Received : 2011.02.15
  • Accepted : 2011.05.20
  • Published : 2011.05.30

Abstract

The purpose of this study was to examine the effect of D-ribose supplementation on the changes of blood fatigue substances (lactate, ammonia, phosphate and hypoxanthine) after maximal exercise performance in college male students. The experimental trials of each subject were divided into the following conditions: placebo supplement trial and D-ribose supplement trial. The subjects exercised using a Concept II Indoor rowing ergometer for 2,000 m Single Skull event. The subjects ingested 200 mg/kg of D-ribose after breakfast, lunch, dinner, as well as thirty minutes before exercising, for six days. Blood fatigue substances were continuously measured before exercise, immediately after exercise, and thirty minutes after exercise. The results indicated a significant difference in blood phosphate and hypoxanthine levels between the two experimental trials in the 30 minute recovery period (p<0.05). However, there were no significant differences in blood lactate and phosphate levels between the two experimental trials. The results of our study suggest that D-ribose supplementation during maximal rowing exercise for 7~8 minutes may contribute to the improvement of metabolic responses as a beneficial ergogenic aid accelerating fatigue clearance.

본 연구에서는 두 가지 투여그룹을 비교하여 ergogenic aid로서 D-ribose의 효과를 운동영양학적으로 규명하는데 그 목적이 있었고, 이를 위하여 2,000 m 조정운동 전, 운동종료 직후, 그리고 운동 종료 후 회복기 30분의 변화를 연구하였으며, 다음과 같은 결론을 얻었다. 첫째, 투여그룹에 따른 2,000 m 조정운동 수행력의 차이는 없었으며 둘째, 투여그룹에 따른 젖산과 암모니아 수치의 차이도 나타나지 않았다. 셋째, 회복 30분에서 무기인산은 PS에 비해서 RS투여그룹의 수치가 더 낮게 나타났으며, 마지막으로 회복 30분에서 hypoxanthine의 축적은 PS투여그룹에 비해 RS투여그룹의 수치가 더 낮게 나타났다. 따라서, 7-8분 정도의 고강도 운동 시 운동기록의 단축에 D-ribose 구강투여의 효과는 없었지만, 휴식 기 피로회복에 긍정적인 효과를 줄 수 있을 것이라 사료된다.

Keywords

References

  1. Babij, P. S., S. M. Matthews, and M. J. Rennie. 1983. Changes in blood ammonia, lactate and amino acid in relation to workload during bicycle ergometer exercise in man. J. Appl. Physiol. 50, 405-411. https://doi.org/10.1007/BF00423246
  2. Boer, P. and O. Sperling. 1995. Role of cellular ribose-5-phosphate content in the regulation of 5-phosphoribosyl-1-pyrophosphate and de novo purine synthesis in a human hepatoma cell line. Metabolism 44, 1469-1474. https://doi.org/10.1016/0026-0495(95)90148-5
  3. Dodd, S. L., C. A. Johnson, K. Fernholz, and J. A. St Cyr. 2004. The role of ribose in human skeletal muscle metabolism. Med. Hypotheses 62, 819-824. https://doi.org/10.1016/j.mehy.2003.10.026
  4. Dudley, G. A., R. S. Staron, T. F. Murray, F. C. Hagerman, and A. Luginbuhl. 1983. Muscle fiber composition and blood ammonia levels after intense exercise in humans. J. Appl. Physiol. 54, 582-586.
  5. Eriksson, L. S., S. Broberg, O. Bjorkman, and J. Wahren. 1985. Ammonia metabolism during exercise in man. Clin. Physiol. 5, 325-336. https://doi.org/10.1111/j.1475-097X.1985.tb00753.x
  6. Güth, K. and J. D. Potter. 1987. Effect of and cycling cross-bridges on the structure of troponin C and Ca2+ affinity of the Ca2+-specific regulatory sites in skeletal rabbit psoas fibers. J. Biol. Chem. 262, 13627-13635.
  7. Hellsten, Y., L. Skadhauge, and J. Bangsbo. 2004. Effect of ribose supplementation on resynthesis of adenine nucleotides after intense intermittent training in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, 182-188.
  8. Kreider, R. B., C. Melton, M. Greenwood, C. Rasmussen, J. Lundberg, C. Earnest, and A. Almada. 2003. Effects of oral D-ribose supplementation on anaerobic capacity and selected metabolic markers in healthy males. Int. J. Sport Nutr. Exerc. Metab. 13, 76-86.
  9. McCarthey, N., G. J. Heigenhauser, and N. L. Jones. 1983. Effects of pH on maximal power output and fatigue during short-term dynamic exercise. J. Appl. Physiol. 55, 225-229.
  10. Murray, R. K., D. K. Granner, P. A. Mayes, and V. W. Rodwell. 2006. Harper's Biochemistry. pp. 88-93, 27th eds., McGraw-Hill.
  11. Op 't Eijnde, B., M. Van Leemputte, F. Brouns, G. J. Van Der Vusse, V. Labarque, M. Ramaekers, R. Van Schuylenberg, P. Verbessem, H. Wijnen, and P. Hespel. 2001. No effects of oral ribose supplementation on repeated maximal exercise and de novo ATP resynthesis. J. Appl. Physiol. 91, 2275-2281.
  12. Paik, I. Y., J. H. Woo, and J. H. Chae. 2000. The effects of oral creatine supplementation on exercise performance and blood fatigue elements changes in short track speed skaters. Korean J. Phys. Edu. 39, 340-350.
  13. Raue, U., P. M. Gallagher, D. L. Williamson, M. P. Godard, and S. W. Trappe. 2001. Effects of ribose supplementation on performance during repeated high-intense men cycle sprints. Med. Sci. Sports Exerc. 33, S44.
  14. Stathis, C. G., S. Zhao, M. F. Carey, and R. J. Snow. 1999. Purine loss after repeated sprint bouts in humans. J. Appl. Physiol. 87, 2037-2042.
  15. Sahlin, K., M. Tonkonogi, and K. Söderlund. 1999. Plasma hypoxanthine and ammonia in humans during prolonged exercise. Eur. J. Appl. Physiol. Occup. Physiol. 80, 417-422. https://doi.org/10.1007/s004210050613
  16. Van Gammeren, D., D. Falk, and J. Antonio. 2002. The effects of four weeks of ribose supplementation on body composition and exercise performance in healthy, young, male recreational bodybuilders: a double-blind, placebo-controlled trial. Curr. Ther. Res. 63, 486-495. https://doi.org/10.1016/S0011-393X(02)80054-6
  17. Williams, M. H. 2006. Nutrition for Health, Fitness & Sport, 8th eds., McGraw-Hill.
  18. Zhao, S., R. J. Snow, C. G. Stathis, M. A. Febbraio, and M. F. Carey. 2000. Muscle adenine nucleotide metabolism during and in recovery from maximal exercise in humans. J. Appl. Physiol. 88, 1513-1519.

Cited by

  1. Comparing the effects of intake of sugar containing different levels of D-ribose in sugar on glycemic index and blood glucose response in healthy adults vol.50, pp.5, 2017, https://doi.org/10.4163/jnh.2017.50.5.426