DOI QR코드

DOI QR Code

Improved Luminescence Properties of Polycrystalline ZnO Annealed in Reduction Atmosphere

  • Chang, Sung-Sik (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University)
  • Received : 2011.04.04
  • Accepted : 2011.05.18
  • Published : 2011.05.31

Abstract

The luminescence properties of polycrystalline ZnO annealed in reducing ambience ($H_2/N_2$) have been studied. An effective quenching of green luminescence with enhanced UV emission from polycrystalline ZnO is observed for the reduced ZnO. The variations of the UV and green luminescence band upon reduction treatment are investigated as a function of temperature in the range between 20 and 300 K. Upon annealing treatment in reducing ambience, the optical quality of polycrystalline ZnO is improved. The UV to green intensity ratio of sintered ZnO approaches close to zero (~0.05). However, this ratio reaches more than 13 at room temperature for polycrystalline ZnO annealed at $800^{\circ}C$ in reducing ambience. Furthermore, the full width at half maximum (FWHM) of the UV band of polycrystalline ZnO is reduced compared to unannealed polycrystalline ZnO. Electron paramagnetic resonance (EPR) measurements clearly show that there is no direct correlation between the green luminescence and oxygen vacancy concentration for reduced polycrystalline ZnO.

Keywords

References

  1. S. A. Studenikin, N. Golego, and M. Cocivera, “Fabricaion of Green and Orange Photoluminescent, Undoped ZnO Films using Spray Pyrolysis,” J. Appl. Phys., 84 2287-94 (1998). https://doi.org/10.1063/1.368295
  2. M. Purica, E. Budianu, E. Rusu, M. Danila, and R. Gavrila, “Optical and Structural Investingation of ZnO Films prepared by Chemical Vapor Deposition,” Thin Solid Films, 403-4 485-88(2002). https://doi.org/10.1016/S0040-6090(01)01544-9
  3. S. Bethe, H. Pan, and B. W. Wessels, “Luminescence of Heteroepitaxial Zinc Oxide”, Appl. Phys. Lett., 52 138-40 (1988). https://doi.org/10.1063/1.99030
  4. Z. L. Pei, C. Sun, M. H. Tan, J. Q. Xiao, D. H. Guan, R. F. Huang, and L. S. Wen, “Optical and Electrical Properties Direct-current Magnetron Sputtered ZnO:Al Films,” J. Appl. Phys., 90 3432-36 (2001). https://doi.org/10.1063/1.1398070
  5. J. Ma, F. Ji, H.-L. Ma, and S. Li, “Electrical and Optical Properties of ZnO:Al Films Prepared by an Evaporation Method,” Thin Solid Films, 279 213-15 (1996). https://doi.org/10.1016/0040-6090(95)08173-9
  6. S.-S. Chang, G. J. Choi, H. J. Park, M. E. Stora, and R. E. Hummel, “UV and Green Photoluminescence from Sparkprocessed Zn,” Mater. Sci. Eng., B 83 29-34 (2001). https://doi.org/10.1016/S0921-5107(00)00799-6
  7. S.-S. Chang, H. J. Park, S. O. Yoon, and A. Sakai, “Luminescence Properties of Anodically Etched Porous Zn”, Appl. Surf. Sci., 158 330-34 (2000). https://doi.org/10.1016/S0169-4332(00)00039-8
  8. S.-S. Chang, S. O. Yoon, H. J. Park, and A. Sakai, “Comparison of Luminescence Behavior of Spark-processed Zn and Anodically Etched Porous Zn,” Mater. Lett., 53 168-74 (2002). https://doi.org/10.1016/S0167-577X(01)00471-2
  9. H. J. Ko, Y. F. Chen, Z. Zhu, T. Yao, I. Kobayashi, and H. Uchiki, “Photoluminescence Properties of ZnO Epilayer Grown on $CaF_2$ (111) by Plasma Assisted Molecular Beam Epitaxy,” Appl. Phys. Lett., 76 1905-7 (2000). https://doi.org/10.1063/1.126207
  10. C. J. Pan, C. W. Tu, J. J. Song, G. Cantwell, C. C. Lee, B. J. Pong, and G.. C. Chi, “Photoluminsecence of ZnO Films Grown by Plasma-assisted Molecular Beam Epitaxy,” J. Cryst. Growth, 282 112-16 (2005). https://doi.org/10.1016/j.jcrysgro.2005.04.091
  11. W. S. Shi, O. Agyeman, and C. N. Xu, “Enhancement of the Light Emissions from Zinc Oxide Films by Controlling the Post-treatment Ambient,” J. Appl. Phys., 91 5640-44 (2002). https://doi.org/10.1063/1.1466527
  12. J. Q. Hu and Y. Bando, “Growth and Optical Properties of Single Crystal Tubular ZnO Whiskers,” Appl. Phys. Lett., 82 1401-4 (2003). https://doi.org/10.1063/1.1558899
  13. T. C. Damen, S. Sp. S. Porto, and B. Tell, “Raman Effect in Zinc Oxide,” Phys. Rev., 142 570-74 (1966). https://doi.org/10.1103/PhysRev.142.570
  14. J. N. Zeng, J. K. Low, Z. M. Ren, T. Liew, and Y. F. Lu, “Effect of Deposition Conditions on Optical and Electrical Properties of ZnO Films Prepared by Pulsed Laser Deposition,” Appl. Surf. Sci., 197-98 362-67 (2002). https://doi.org/10.1016/S0169-4332(02)00425-7
  15. W. I. Park, Y. H. Jun, S. W. Jung, and Gyu-Chul Yi, “Excitonic Emission Observed in ZnO Single Crystal Nanorods,” Appl. Phys. Lett., 82 964-66 (2004).
  16. D. C. Reynolds, D. C. Look, and B. Jogai , C. W. Litton, T. C. Collins, W. Harsch, and G. C. Cantwell, “Neutral-donor Bound-excition Complexes in ZnO Nanorods,” Phys. Rev., B 57 12151-55 (1998).
  17. Y. Chen, D. M. Bagnall, H.-J. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma Assited Molecular Beam Epitaxy of ZnO on c-plane Sapphire: Growth and Characterization”, J. Appl. Phys., 84 3912-18 (1998). https://doi.org/10.1063/1.368595
  18. T. Sekiguchi, N. Ohashi, and Y. Yerada, “Effect of Hydrogenation in ZnO Luminescence,” Jpn. J. Appl. Phys., 36 L289-L291 (1997). https://doi.org/10.1143/JJAP.36.L289
  19. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between Photoluminescence and Oxygen Vacancies in ZnO Phosphor,” Appl. Phys. Lett., 68 403-5 (1996). https://doi.org/10.1063/1.116699
  20. P. H. Kasai, “Electron Spin Resonance Studies of Donors and Acceptors in ZnO,” Phys. Rev., 130 989-95 (1963). https://doi.org/10.1103/PhysRev.130.989
  21. F. A. Korger and H. J. Vink, “Origin of Fluorescence in Self Activated-ZnS, CdS, and ZnO,” J. Chem. Phys., 22 250-52 (1954). https://doi.org/10.1063/1.1740044
  22. X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and Cathodoluminescence Studies of Stoichiometric and Oxygen Deficient ZnO Films,” Appl. Phys. Lett., 78 2285-87 (2001). https://doi.org/10.1063/1.1361288
  23. M. Liu, A. H. Kitai, and P. Mascher, “Point Defects and Luminescence Centers in Zinc Oxide and Zinc Oxide doped with Manganese,” J. Lumin., 54 35-42 (1992). https://doi.org/10.1016/0022-2313(92)90047-D
  24. E. G. Bylander, “Surface Effects on Low Energy Cathodoluminescence of Zinc Oxide,” J. Appl. Phys., 49 1188-95 (1978). https://doi.org/10.1063/1.325059
  25. B. X. Lin, Z. X. Fu, and Y. B. Jia, “Green Luminescent Center in Undoped Zinc Oxide Films Deposited on Silicon Substrates”, Appl. Phys. Lett., 79 943-45 (2001). https://doi.org/10.1063/1.1394173
  26. M. Schulz, “ESR Experiments on Ga Donor in ZnO Crystals,” Phys. Status Solidi (a), 27 K5-K8 (1975). https://doi.org/10.1002/pssa.2210270140
  27. W. E. Carlos, E. R. Glaser, and D. C. Look, “Magnetic Resonance Studies of ZnO,” Physica B, 308-10 976-79 (2001). https://doi.org/10.1016/S0921-4526(01)00850-X
  28. H. Zhou, A. Hofstaetter, D. M. Hofmann, and B.K. Meyer, “Magnetic Resonance Studies on ZnO Nanocrystals,” Microelectronic Eng., 66 59-64 (2003). https://doi.org/10.1016/S0167-9317(03)00025-X
  29. B. Yu, C. Zhu, F. Gan, and Y. Huang, “Electron Spin Resonance Properties of ZnO Microcrystallites,” Mater. Lett., 33 247-50 (1988).
  30. K. Ogata, K. Sakurai, Sz. Fujita, Sg. Fujita, and K. Matsushige, “Effect of Thermal Annealing of ZnO Layers grown by MBE,” J. Cryst. Growth, 214/15 312-15 (2000). https://doi.org/10.1016/S0022-0248(00)00099-3
  31. F. Wen, W. Li, J.-H. Moon, and J. H. Kim, “Hydrothermal Synthesis of ZnO:Zn with Green Emission at low Temperature with Reduction Process,” Solid State Commun., 135 34-7 (2005). https://doi.org/10.1016/j.ssc.2005.03.066

Cited by

  1. Visible Photoluminescence Components of Solution-Grown ZnO Nanowires: Influence of the Surface Depletion Layer vol.116, pp.36, 2012, https://doi.org/10.1021/jp302443n
  2. Violet Emission in ZnO Nanorods Treated with High-Energy Hydrogen Plasma vol.5, pp.20, 2013, https://doi.org/10.1021/am403133u
  3. Optical and morpho-structural properties of ZnO nanostructured particles synthesized at low temperature via air-assisted USP method vol.122, pp.3, 2016, https://doi.org/10.1007/s00339-016-9708-4