References
- M. Akelbek and S. Kirkland, Coefficients of ergodicity and the scrambling index, Linear Algebra Appl. 430 (2009), no. 4, 1111-1130. https://doi.org/10.1016/j.laa.2008.10.007
- R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, 1991.
- H. H. Cho, Indices of irreducible Boolean matrix, J. Korean Math. Soc. 30 (1993), no. 2, 267-274.
- H. H. Cho and H. K. Kim, Competition indices of digraphs, Proceedings of workshop in combinatorics (2004), 99-107.
- H. H. Cho, S.-R. Kim, and Y. Nam, The m-step competition graph of a digraph, Discrete Appl. Math. 105 (2000), no. 1-3, 115-127. https://doi.org/10.1016/S0166-218X(00)00214-6
- H. K. Kim, Competition indices of tournaments, Bull. Korean Math. Soc. 45 (2008), no. 2, 385-396. https://doi.org/10.4134/BKMS.2008.45.2.385
- B. Liu and H.-J. Lai, Matrices in Combinatorics and Graph Theory, Kluwer Academic Publishers, 2000.
- J. Shao, The exponent set of symmetric primitive matrices, Scientia Sinica Ser. A 30 (1987), no. 4, 348-358.
- J. Shao and Q. Li, The indices of convergence reducible Boolean matrices, Acta Math. Sinica 33 (1990), 13-28.
- J. Shen, Proof of a conjecture about the exponent of primitive matrics, Linear Algebra and Its Appl. 216 (1995), 185-203. https://doi.org/10.1016/0024-3795(93)00132-J
Cited by
- On Some Recent Developments in Ulam's Type Stability vol.2012, 2012, https://doi.org/10.1155/2012/716936
- A matrix sequence{Γ(Am)}m=1∞might converge even if the matrix A is not primitive vol.438, pp.5, 2013, https://doi.org/10.1016/j.laa.2012.10.012
- A bound on the generalized competition index of a primitive matrix using Boolean rank vol.435, pp.9, 2011, https://doi.org/10.1016/j.laa.2011.04.002
- Characterization of irreducible Boolean matrices with the largest generalized competition index vol.466, 2015, https://doi.org/10.1016/j.laa.2014.10.004
- THE COMPETITION INDEX OF A NEARLY REDUCIBLE BOOLEAN MATRIX vol.50, pp.6, 2013, https://doi.org/10.4134/BKMS.2013.50.6.2001
- Generalized competition index of an irreducible Boolean matrix vol.438, pp.6, 2013, https://doi.org/10.1016/j.laa.2012.10.040
- Scrambling index set of primitive digraphs vol.439, pp.7, 2013, https://doi.org/10.1016/j.laa.2013.05.022
- On the matrix sequence for a Boolean matrix A whose digraph is linearly connected vol.450, 2014, https://doi.org/10.1016/j.laa.2014.02.046
- Generalized competition indices of symmetric primitive digraphs vol.160, pp.10-11, 2012, https://doi.org/10.1016/j.dam.2012.03.001
- A bound of generalized competition index of a primitive digraph vol.436, pp.1, 2012, https://doi.org/10.1016/j.laa.2011.06.040