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COMPETITION INDICES OF

STRONGLY CONNECTED DIGRAPHS

Han Hyuk Cho and Hwa Kyung Kim

Abstract. Cho and Kim [4] and Kim [6] introduced the concept of the

competition index of a digraph. Cho and Kim [4] and Akelbek and Kirk-
land [1] also studied the upper bound of competition indices of primitive
digraphs. In this paper, we study the upper bound of competition in-
dices of strongly connected digraphs. We also study the relation between

competition index and ordinary index for a symmetric strongly connected
digraph.

1. Preliminaries and notations

Let D = (V,E) denote a digraph (directed graph) with vertex set V = V (D),
arc set E = E(D). Loops are permitted but multiple arcs are not. A x → y walk
in a digraph D is a sequence of vertices x, v1, . . . , vt, y ∈ V (D) and a sequence
of arcs (x, v1), (v1, v2), . . . , (vt, y) ∈ E(D), where the vertices and arcs are not
necessarily distinct. A closed walk is a x → y walk where x = y. A cycle is a
closed x → y walk in which all vertices except x and y are distinct.

The length of a walk W is the number of arcs in W . The notation x
k→ y

is used to indicate that there is a x → y walk of length k. The distance from
vertex x to vertex y in D, denoted by d(x, y), is the length of a shortest walk
from x to y. An l-cycle is a cycle of length l, and is denoted by Cl. If the
digraph D has at least one cycle, the length of a shortest cycle in D is called
the girth of D, and is denoted by s(D).

A digraph D is called strongly connected if for each pair of vertices x and y
in V (D) there is a walk from x to y. For a strongly connected digraph D, the
index of imprimitivity of D is the greatest common divisor of the lengths of the
cycles in D, and is denoted by k(D). If D is a trivial digraph of order 1, k(D)
is undefined. For a strongly connected digraph D, D is primitive if k(D) = 1.
If D is primitive, there exists some positive integer l such that there is a walk
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of length exactly l from each vertex x to each vertex y. The smallest such l is
called the exponent of D, denoted by exp(D). Exponents have been studied by
many researchers [2, 7, 8, 9, 10].

Cho et al. [5] introduced the m-step competition graph, a generalization of
the competition graph. Let D be a digraph (with or without loops) with the
vertex set {v1, v2, . . . , vn}. Given a positive integer m, we say that a vertex vk
of D is an m-step common prey of vi and vj if there are two directed walks of
length m, one from vi to vk and the other from vj to vk. Then, the m-step
competition graph of D, denoted by Cm(D), has the same vertex set as D, and
there is an edge between vertices vi and vj (vi ̸= vj) if and only if vi and vj
have an m-step common prey in D. The m-step digraph of D, denoted by
Dm, has the same vertex set as D and an arc (vi, vj) if and only if there is a
directed walk of length m from vi to vj . Then we have Cm(D) = C(Dm) for
each positive integer m, see [5].

Consider the sequence D, D2, D3, . . ., Dm, . . .. Then there exists a smallest
positive integer q such that Dq = Dq+r for some positive integer r. Such an
integer q is called the index of D and is denoted by index(D). There also exists
a smallest positive integer p such that Dq = Dq+p, and such an integer is called
the period of D and is denoted by period(D). Now, consider the competition
graph sequence C(D), C(D2), C(D3), . . . , C(Dm), . . .. There exists a smallest
positive integer q such that C(Dq+i) = C(Dq+r+i) for some positive integer r
and every nonnegative integer i. Such an integer q is called the competition
index of D and is denoted by cindex(D). Let q = cindex(D). Then there
exists a smallest positive integer p such that C(Dq+i) = C(Dq+p+i) for every
nonnegative integer i. Such an integer p is called the competition period of D
and is denoted by cperiod(D). From the definition of index and competition
index, we get the following.

Proposition 1.1 (Cho and Kim [4]). For a digraph D, we have

cindex(D) ≤ index(D).

Note that for a primitive digraph D, exp(D) = index(D) and cindex(D) is
the smallest integer q such that C(Dk) is a complete graph for any k ≥ q. It
is well known that the index of imprimitivity of D is equal to period(D) for a
strongly connected digraphD (For details on exponent (index) and period, refer
to [3, 5, 8, 9, 10]). However, the competition period of a strongly connected
digraph is always one, as shown below;

Proposition 1.2 (Cho and Kim [4]). For a strongly connected digraph D, we
have

cperiod(D) = 1.

Proof. Note that each vertex of D has an outgoing arc. Thus, every edge
in C(Dm) is an edge in C(Dm+i) for every positive integer i, since any two
vertices having an m-step common prey also have an (m + i)-step common
prey. Therefore, we have cperiod(D) = 1. □
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Figure 1. Un where n = m+ 4

Note that the competition period of a digraph may not be 1 when it is not
strongly connected. For example, consider the above digraph Un. Notice that

there exist walks u1
3k−2−→ w, u2

3k−→ w and u3
3k−1−→ w for each positive integer

k. Therefore we have the competition period of Un is not 1, but 3.
In [4], the upper bound of competition indices of primitive digraphs were

studied as follows.

Lemma 1.3 (Cho and Kim [4]). Let D be a primitive digraph D of order
n (≥ 3) with girth s.

(1) If n is odd, then cindex(D) ≤ n+
(
n−3
2

)
s.

(2) If n is even, then cindex(D) ≤ n− 1 +
(
n−2
2

)
s.

Akelbek and Kirkland [1] have introduced the scrambling index of a primitive
digraph. Scrambling index is the smallest positive integer k such that for every

pair of vertices u and v, there exists a vertex w such that u
k→ w and v

k→ w in
D. Akelbek and Kirkland’s definition of scrambling index is the same as our
definition of the competition index in the case of primitive digraphs. In [1],
they presented the following result regarding the scrambling index.

Lemma 1.4 (Akelbek and Kirkland [1]). Let D be a primitive digraph with n
vertices and girth s.

(1) If s is odd, then cindex(D) ≤ n− s+
(
s−1
2

)
n.

(2) If s is even, then cindex(D) ≤ n− s+
(
n−1
2

)
s.
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Lemma 1.4 gives a better upper bound for the competition indices of prim-
itive digraphs than Lemma 1.3.

For each integer n(n ≥ 3), a Wielandt digraph of order n is a digraph
isomorphic to Wn, as shown in below. Then Wn is a primitive digraph with

girth n−1, and cindex(Wn) = ωn where ωn =
⌈
(n−1)2+1

2

⌉
for a positive integer

n, [1, 4].
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Figure 2. the Wielandt digraph Wn

Akelbek and Kirkland [1] and Cho and Kim [4] have considered the upper
bound of the competition index of a primitive digraph as follows.

Theorem 1.5 (Akelbek and Kirkland [1], Cho and Kim [4]). Let D be a
primitive digraph of order n. Then,

cindex(D) ≤
⌈
(n− 1)2 + 1

2

⌉
.

Equality holds if and only if D is a Wielandt digraph.

In Section 2, we consider the upper bound of the competition index of a
strongly connected digraph. We also study the competition index of a sym-
metric digraph in Section 3.

2. Competition indices of strongly connected digraphs

We consider competition indices of strongly connected digraphs. Suppose
k = k(D) ≥ 1. Then, there exists a vertex partition {V1, V2, . . . , Vk} of the
vertices V of D such that for each 1 ≤ i ≤ k, every arc goes from Vi to Vi+1 for
some i, where Vk+1 = V1. Let Ei be the subgraph of Dk induced by Vi. Then,
Ei is primitive (refer to Theorem 3.4.5 in [2]).
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Consider the strongly connected digraph T11 shown in Figure 3. Note that
k(T11) = 2. Let V1 = {v2, v4, v6, v8, v10} be a set of black vertices and V2 =
{v1, v3, v5, v7, v9, v11} be a set of white vertices. Then, {V1, V2} forms a vertex
partition of T11.
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Figure 3. Digraph T11 with index of imprimitivity 2

Now, consider the induced subgraph E1 (respectively, E2) of V1 (respectively,
V2) in the 2-step digraph T 2

11 of T11 as shown in Figure 4. Then T 2
11 is a

disjoint union of E1 and E2. Note that E1 is a Wielandt digraph of order 5.
We also have cindex(E1) = 9 and cindex(E2) = 10. Furthermore, we have
cindex(T11) = 19.
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Let D be a strongly connected digraph. For a pair of vertices u and v having
a k-step common prey, let cindex(D : u, v) denote the smallest positive integer k
such that u and v have a k-step common prey. If u and v do not have any k-step
common prey, we let cindex(D : u, v) = 1. We also let cindex(D : u, u) = 1.
Let cindex(D : u) denote max{cindex(D : u, v)|v ∈ V (D)}. Then we have
cindex(D) = max{cindex(D : u)|u ∈ V (D)} and cindex(D) = max{cindex(D :
u, v)|u, v ∈ V (D)}.

Now, let D be a primitive digraph. For a pair of vertices u and v in V (D), let
exp(D : u, v) denote the smallest integer k such that there exists a directed walk
of length t from u to v in D for all t ≥ k, and let exp(D : u) = max{exp(D :
u, v)|v ∈ V (D)}. Then, we have exp(D) = max{exp(D : u, v)|u, v ∈ V (D)}.

Theorem 2.1. Suppose k(D) = k for a strongly connected digraph D. Let V1,
V2, . . ., Vk be k nonempty sets, with Vk+1 = V1, where each arc of D issues
from Vi and enters Vi+1 for some i with 1 ≤ i ≤ k. Let Ei be the subgraph of
Dk induced by Vi, where 1 ≤ i ≤ k, and m = min {cindex(Ei) | i = 1, 2, . . . , k}
in Dk. Then, we have

cindex(D) ≤ k(m+ 1)− 1.

Proof. We show that cindex(D : u, v) ≤ k(m + 1) − 1 for any two vertices u
and v. If u ∈ Vi, v ∈ Vj , and i ̸= j, then u and v do not have an l-step
common prey for any positive integer l. Thus, cindex(D : u, v) = 1. Suppose
u, v ∈ Vj and m = cindex(Er) for some 1 ≤ j, r ≤ k. Let u′, v′ be vertices in

Vr such that there exist walks u
f→ u′ and v

f→ v′, where 0 ≤ f ≤ k − 1. Since
cindex(Dk : u′, v′) ≤ cindex(Er), we have

cindex(D : u, v) ≤ f + cindex(D : u′, v′)

≤ k − 1 + k · cindex(Dk : u′, v′)

≤ k − 1 + k · cindex(Er).

We have cindex(D : u, v) ≤ k(m + 1) − 1. Thus, we have cindex(D) =
max{cindex(D : u, v)|u, v ∈ V (D)} ≤ k(m + 1) − 1. This establishes the
result. □

Note that the inequality in Theorem 2.1 is sharp. For the digraph D = T11

shown in Figure 3, we have that k = 2, m = 9 = cindex(E1), and cindex(T11 :
v1, v5) = 19. Thus, we have cindex(T11) = k(m+ 1)− 1.

Lemma 2.2. Let D be a strongly connected digraph of order n (≥ 3). If
k(D) > n

2 , then we have

cindex(D) ≤
⌊
n− 1

2

⌋
.

Proof. Let the girth of D be s. If k(D) > n
2 , then every cycle in D has the

same length s(= k(D)). Let V1, V2, . . ., Vs be s nonempty sets, with Vs+1 = V1,
where each arc of D issues from Vi and enters Vi+1 for some i with 1 ≤ i ≤ s.
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Consider two vertices u ∈ Vi and y ∈ Vj . If i ̸= j, or i = j and u = v,
then cindex(D : u, v) = 1. If u and v do not have l-step common prey for
any positive number l, then cindex(D : u, v) = 1. Without loss of generality,
we may assume that cindex(D : u, v) = m > 1 and u, v ∈ Vs. Then we
have walks such that u→u1→· · ·→um = w and v→v1→· · ·→vm = w, where
ui ̸= vi and ui, vi ∈ Vi (i = 1, . . . ,m− 1). Therefore we have 2m+ 1 ≤ n and
cindex(D : u, v) = m ≤

⌊
n−1
2

⌋
. This establishes the result. □

From Theorem 2.1 and Lemma 2.2, we have the following theorem.

Theorem 2.3. Suppose D is a strongly connected digraph of order n (≥ 3).
Then, we have

cindex(D) ≤ ωn =

⌈
(n− 1)2 + 1

2

⌉
.

This equality holds if and only if D is isomorphic to Wn.

Proof. Let k(D) = k. If k = 1, the above equality holds by Theorem 1.5. If
n = 3 and k ≥ 2, we can check that cindex(D) ≤ ωn. If k(D) > n

2 , this
equality holds by Lemma 2.2. Assume that 2 ≤ k ≤ n

2 and n ≥ 4. Let V1,
V2, . . ., Vk be k nonempty sets, with Vk+1 = V1, where each arc of D issues
from Vi and enters Vi+1 for some i with 1 ≤ i ≤ k. Let Ei be the subgraph
of Dk induced by Vi, where 1 ≤ i ≤ k. Then, there exists a positive integer r
such that the order of Er is less than or equal to

⌊
n
k

⌋
. From Theorem 1.5, we

have cindex(Ei) ≤ ω|Vi| for each 1 ≤ i ≤ k since each Ei is a primitive digraph.
Therefore we have cindex(Er) ≤ ω⌊n

k ⌋. By Theorem 2.1, we have

cindex(D) ≤ k − 1 + k · cindex(Er)

≤ k − 1 + k · ω⌊n
k ⌋

≤ k − 1 + k ·
(
n
k

)2 − 2
(
n
k

)
+ 3

2

=
n2

2k
+

5

2
k − n− 1.

Let g(k) = n2

2k + 5
2k − n − 1 (2 ≤ k ≤ n

2 ). Then g(k) attains the maxi-

mum value when k = 2. g(2) = n2−4n+16
4 < ωn since n ≥ 4. Therefore, we

have cindex(D) < ωn for a nonprimitive strongly connected digraph D. This
establishes the result. □

Next we study the competition indices of symmetric strongly connected di-
graphs.

3. Competition indices of symmetric strongly connected digraphs

In this section, we assume that D is a symmetric strongly connected digraph
of order n (≥ 2). Observe that in symmetric graphs, strongly connected is the
same as connected. Since there is a 2-cycle in D, we have k(D) ≤ 2. For
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a connected symmetric primitive digraph D, k(D) = 2 if D is bipartite, and
otherwise k(D) = 1.

Lemma 3.1 (Shao [8]). Let u and v be vertices of a symmetric primitive
digraph D such that there exist directed walks of lengths k1 and k2, respectively,
with different parity between u and v. Then, we have

exp(D : u, v) ≤ max{k1, k2} − 1.

Proposition 3.2 (Shao [8]). Let En = {exp(D) : D is a symmetric primitive
digraph of order n ≥ 4}. Then we have

En = {1, 2, . . . , 2n− 2}\S,
where S is the set of all odd numbers in {n, n+ 1, . . . , 2n− 3}.
Lemma 3.3. Let D be a symmetric primitive digraph of order n. Then, for
each vertex u, we have

cindex(D : u) =

⌈
exp(D : u)

2

⌉
.

Proof. Consider two vertices u and v in V (D).

First, we have two directed walks u
exp(D:u,v)−→ v and u

exp(D:u,v)+1−→ v. Since

D is symmetric, u and v have a
⌈
exp(D:u,v)

2

⌉
-step common prey. Therefore, we

have

cindex(D : u, v) ≤
⌈
exp(D : u, v)

2

⌉
.

Suppose u = v. Then there exists a vertex w (̸= u) such that u
1→ w,

and there exists a directed walk u
2·cindex(D:u,w)−→ w. From Lemma 3.1, we have

exp(D : u,w) ≤ 2 · cindex(D : u,w)− 1. Therefore, we have

exp(D : u, v) ≤ exp(D : u,w) + 1 ≤ 2 · cindex(D : u,w) ≤ 2 · cindex(D : u).

Suppose u ̸= v. If d(u, v) is odd, then we have two walks u
d(u,v)−→ v and

u
2·cindex(D:u,v)−→ v. From Lemma 3.1, we have exp(D : u, v) ≤ 2·cindex(D : u)−1

since 2 · cindex(D : u) > d(u, v). If d(u, v) is even, then we have a vertex

w such that u
d(u,v)−1−→ w (̸= u)→v. We also have u

2·cindex(D:u,w)−→ w. Since
d(u, v)− 1 is odd, we have exp(D : u,w) ≤ 2 · cindex(D : u,w)− 1. Therefore,
exp(D : u, v) ≤ exp(D : u,w) + 1 ≤ 2 · cindex(D : u,w) ≤ 2 · cindex(D : u).
exp(D : u, v) ≤ 2 · cindex(D : u). Therefore, we always have

exp(D : u)

2
≤ cindex(D : u).

From the above results, we have exp(D:u)
2 ≤ cindex(D : u) ≤

⌈
exp(D:u)

2

⌉
. For

each vertex u in D, we have

cindex(D : u) =

⌈
exp(D : u)

2

⌉
.
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This establishes the result. □

Theorem 3.4. If D is a symmetric strongly connected digraph, then we have

cindex(D) =

⌈
index(D)

2

⌉
.

Proof. Let the order of D be n. If n = 1, this equality holds. Suppose n ≥ 2.
Then, we have k(D) ≤ 2.

Case 1. k(D) = 1
Note that index(D) = max{exp(D : u)} and cindex(D) = max{cindex(D : u)}.
From Lemma 3.3, the result is established.

Case 2. k(D) = 2
There are bipartition V1 and V2 of the vertex set V (D). Consider two vertices
u ∈ Vi and v ∈ Vj .

If i ̸= j, we have cindex(D : u, v) = 1. If i = j and index(D) is even, there

is a directed walk such that u
index(D)−→ v. Then, we have cindex(D : u, v) ≤

index(D)
2 . If i = j and index(D) is odd, there is a directed walk such that

u
index(D)+1−→ v. In all cases, we have cindex(D : u, v) ≤ index(D)+1

2 . Therefore,

we have cindex(D) ≤
⌈
index(D)

2

⌉
.

If i = j, there exists u
2·cindex(D)−→ v. If i ̸= j, there is no u

2·cindex(D)−→ v and

there exist a vertex u′ ∈ Vj and a directed walk such that u
1−→ u′ 2·cindex(D)−→ v.

Then, we have D2·cindex(D) = D2·cindex(D)+2. Therefore, we have index(D) ≤
2 · cindex(D).

This establishes the result. □

Corollary 3.5. If D is a symmetric primitive digraph of order n ≥ 4, then
cindex(D) ≤ n− 1, and equality holds if and only if D is a path with a loop on
an end vertex.

Proof. From Proposition 3.2 and Theorem 3.4, we have cindex(D) =
⌈
index(D)

2

⌉
≤ n−1. Since there are no symmetric primitive digraphs whose index is 2n−3
from Proposition 3.2, this corollary is proved. □

4. Closing remark

In this paper, we have introduced the concept of the competition index of a
digraph using the concept of the m-step competition graph introduced in [5].
For digraphs whose competition periods are one, there are some similarities
between the property of the competition indices and that of ordinary indices
or exponents. However, for digraphs whose competition periods are not one,
there are significant differences between their competition indices and ordinary
indices. In the case of the ordinary index, it is well known that index(D) ≤
(n− 2)2 + 2 for a reducible digraph D of order n, [7, 9]. This implies that the
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index of a Wielandt digraph is the maximum possible index among indices of
digraphs of order n. However, in the case of a competition index, the similarity
between the properties does not hold. For example, consider the competition
index of Un shown in Figure 1. Then, we have cindex(Un) = m2 − 2m + 3
and cperiod(Un) = 3. Thus cindex(Un) > ωn when n ≥ 15. That is, there is
a reducible digraph of order n whose competition index is greater than that
of any strongly connected digraph of order n. As shown in the example Un,
the competition indices of reducible digraphs are very interesting, and there is
much work to be done.

Acknowledgement. We would like to thank an anonymous referee for his or
her useful suggestions.
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