DOI QR코드

DOI QR Code

Potential for Augmentation of Fruit Quality by Foliar Application of Bacilli Spores on Apple Tree

  • Ryu, Choong-Min (Industrial Biotechnology and Bioenergy Research Center, KRIBB) ;
  • Shin, Jung-Nam (Industrial Biotechnology and Bioenergy Research Center, KRIBB) ;
  • Qi, Wang (Department of Plant Pathology, China Agriculture University) ;
  • Ruhong, Mei (Department of Plant Pathology, China Agriculture University) ;
  • Kim, Eui-Joong (GenoFocus) ;
  • Pan, Jae-Gu (Industrial Biotechnology and Bioenergy Research Center, KRIBB)
  • Received : 2011.02.15
  • Accepted : 2011.04.14
  • Published : 2011.06.30

Abstract

Previous studies have addressed the management of phyllosphere pathogens by leaf and root-associated microbes. The present study evaluated the effect of the foliar application of three strains of Bacillus spp. on plant growth and fruit quality. The application of a bacilli spore preparation significantly improved leaf growth parameters such as leaf thickness and photosynthesis capacity, indicating that bacilli treatment directly promoted leaf growth. In addition, foliar treatment resulted in an improvement in the key indicators of fruit quality including water, glucose, and sucrose contents. The present results suggest that foliar spraying of beneficial bacilli is a potential treatment of wide application for the improvement of apple quality. Foliar application of bacilli preparation as effective plant growth-promoting rhizobacteria broadens the spectrum of their availability for orchard application.

Keywords

References

  1. Aslanta , R., Cakmakci, R. and ahin, F. 2007. Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci. Hortic-AMSTERDAM 111:371-377. https://doi.org/10.1016/j.scienta.2006.12.016
  2. Andrews, J. H. 1992. Biological control in the phyllosphere. Annu. Rev. Phytopathol 30:603-635. https://doi.org/10.1146/annurev.py.30.090192.003131
  3. Andrews, J. H. and Harris, R. F. 2000. The ecology and biogeography of microorganisms on the plant surfaces. Annu. Rev. Phytopathol 38:145-180. https://doi.org/10.1146/annurev.phyto.38.1.145
  4. Beattie, G. A. and Lindow, S. 1999. Bacterial colonization of leaves: A spectrum of strategies. Phytopathology 89:353-359. https://doi.org/10.1094/PHYTO.1999.89.5.353
  5. Broggini, G. A. L., Duffy, B., Hollinger, E., Schärer, H.-J., Gessler, C. and Patocchi, A. 2005. Detection of the fire blight biocontrol agent B. subtilis BD170 (Biopros) in a Swiss apple orchard. Eur. J. Plant Pathol. 111:93-100. https://doi.org/10.1007/s10658-004-1423-x
  6. Collins, D. P. and Jacobsen, B. J. 2003. Optimizing a Bacillus subtilis isolate for biological control of sugar beet cercospora leaf spot. Biol. Control 26:153-161. https://doi.org/10.1016/S1049-9644(02)00132-9
  7. Collins, D. P., Jacobsen, B. J. and Maxwell, B. 2003. Spatial and temporal population dynamics of a phyllosphere colonizing Bacillus subtilis biological control agent of sugar beet cercospora leaf spot. Biol. Control 26:224-232. https://doi.org/10.1016/S1049-9644(02)00146-9
  8. Emmert, E. A. and Handelsman, H. 1999. Biocontrol of plant disease: a [gram-] positive perspective. FEMS Microbiol. Lett 171:1-9. https://doi.org/10.1111/j.1574-6968.1999.tb13405.x
  9. Gueldner, R. C., Reilly, C. C., Pusey, P. L., Costello, C. E. and Arrendale, R. F. 1988. Isolation and identification ofiturins as antifungal peptides in biological control of peach brown rot with Bacillus subtilis. J. Agric. Fd. Chem. 36:366-370. https://doi.org/10.1021/jf00080a031
  10. Jacobsen, B. J., Zidack, N. K. and Larson, B J. 2004. The role of Bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology 94:1272-1275. https://doi.org/10.1094/PHYTO.2004.94.11.1272
  11. Jones, A. L. and Aldwinkle, H. S. 1990. Compendium of apple and pear diseases APS Press.
  12. Hang, N. T. T., Oh, S.-O., Kim, G. H., Hur, J.-S. and Koh, Y. J. 2005. Bacillus subtilis S1-0210 as a biocontrol agent against Botrytis cinerea in strawberries. Plant Pathol. J. 21:59-63. https://doi.org/10.5423/PPJ.2005.21.1.059
  13. Kang, S. H., Cho, H.-S., Cheong, H., Ryu, C.-M., Kim, J. F. and Park, S.-H. 2007. Two bacterial endophytes eliciting boot plant growth promotion and plant defense on pepper (Capsicum annuum L.). J. Microbiol. Biotechnol. 17:96-103.
  14. Katiyar, V. and Goel, R. 2004. Improved plant growth from seed bacterization using siderophore overproducing cold resistant mutant of Pseudomonas fluorescens. J. Microbiol. Biotechnol. 14:653-657.
  15. Kiewnick, S. and Jacobsen, B. J. 1998. Biological control of Cercospora beticola on sugar beet with phyllosphere bacteria. Molecular Approaches in Biological Control: IOBC Bulletin 21:279-282.
  16. Kim, D.-S., Cook, R. J. and Weller, D. M. 1997. Bacillus sp. L324-92 for biological control of three root diseases of wheat growth with reduced tillage. Phytopathology 87:551-558. https://doi.org/10.1094/PHYTO.1997.87.5.551
  17. Kinkel, L. L. 1997. Microbial population dynamics on leaves. Annu. Rev. Phytopathol. 35:327-347. https://doi.org/10.1146/annurev.phyto.35.1.327
  18. Kinkel, L. L., Wilson, M. and Lindow, S. E. 1996. Utility of microcosm studies for predicting phylloplane bacterium population sizes in the field. Appl. Environ. Microbiol. 62:3413-3423.
  19. Kloepper, J. W., Ryu, C.-M. and. Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
  20. Kokalis-Burelle, N., Backman, P. A., Rodriguez-Kabana, R. and Ploper, L. D. 1992. Potential for biological control of early leafspot of peanut using Bacillus cereus and chitin as foliar amendments. Biol. Control 2:321-328. https://doi.org/10.1016/1049-9644(92)90026-A
  21. Kokalis-Burelle, N., Vavrina, C. S., Rosskopf, E. N. and Shelby, R. A. 2002. Field evaluation of plantgrowth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257-266. https://doi.org/10.1023/A:1014464716261
  22. Linda L. K. 1997. Microbial population dynamics on leaves. Annu. Rev. Phytopathol 35:327-347. https://doi.org/10.1146/annurev.phyto.35.1.327
  23. Lindow, S. E. 1987. Competitive exclusion of epiphytic bacteria by ice- Pseudomonas syringae mutants. Appl. Environ. Microbiol. 53:2520-2527.
  24. Lucy, M., Reed, E. and Glick, B. R. 2004. Applications of free living plant growth-promoting rhizobacteria. Anton van Leeuw 86:1-25. https://doi.org/10.1023/B:ANTO.0000024903.10757.6e
  25. Ngugi, H. K., Dedej, S., Delaplane, K. S., Savelle, A. T. and Scherm, H. 2005. Effect of flower-applied Serenade biofungicide (Bacillus subtilis) on pollination-related variables in rabscbiteye blueberry. Biol. Control 33:32-38. https://doi.org/10.1016/j.biocontrol.2005.01.002
  26. Ryu, C.-M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W. and Kloepper, J. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 100:4927-4932. https://doi.org/10.1073/pnas.0730845100
  27. Ryu, C.-M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026. https://doi.org/10.1104/pp.103.026583
  28. Toure, Y., Ongena, M., Jacques, P., Guiro, A. and Thonart, P. 2004. Role of ipopeptides produced by Bacillus subtilis GA1 in the reduction ofgrey mould disease caused by Botrytis cinerea on apple. J. Appl. Microbiol. 96:1151-1160. https://doi.org/10.1111/j.1365-2672.2004.02252.x
  29. Melnick, R. L., Zidack, N. K., Bailey, B. A., Maximova, S. N., Guitinan, M. and Backman, P. A. 2008. Bacterial endophytes: Bacillus spp. from vegetable crops as potential biological control agents of black pod rot of cacao. Biol. Control 46:46-56. https://doi.org/10.1016/j.biocontrol.2008.01.022
  30. McSpadden-Gardener, B. B. 2004. The nature and application of biocontrol Microbes: Bacillus spp. ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94:1252-1258. https://doi.org/10.1094/PHYTO.2004.94.11.1252
  31. Raupach, G. S., Liu, L., Murphy, J. F., Tuzun, S. and Kloepper, J. W. 1996. Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growthpromoting rhizobacteria (PGPR). Plant Dis. 80:891-894. https://doi.org/10.1094/PD-80-0891
  32. Wang, Y. J., Wang, H. M., Yang, C. H., Wang, Q. and Mei, R. H. 2007. Two distinct manganese-containing superoxide dismutase genes in Bacillus cereus: their physiological characterizations and roles in surviving in wheat rhizosphere. FEMS Microbiol. Lett. 272:206-213. https://doi.org/10.1111/j.1574-6968.2007.00759.x
  33. Weller, D. M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26:379-407. https://doi.org/10.1146/annurev.py.26.090188.002115
  34. Wilson, M. and Lindow, S. E. 1993. Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathology 83:117-123. https://doi.org/10.1094/Phyto-83-117
  35. Wilson, M. and Lindow, S. E. 1994. Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl. Environ. Microbiol. 60:4468-4477.
  36. Zhang, H., Kim, M. S., Krishnamachari, V., Payton, P., Sun, Y., Grimson, M., Farag, M. A., Ryu, C.-M., Allen, R., Melo, I. S. and Paré, P. W. 2007. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839-851. https://doi.org/10.1007/s00425-007-0530-2

Cited by

  1. Disease Management in Road Trees and Pepper Plants by Foliar Application of Bacillus spp. vol.22, pp.2, 2016, https://doi.org/10.5423/RPD.2016.22.2.81
  2. Plant growth-promoting rhizobacteria act as biostimulants in horticulture vol.196, 2015, https://doi.org/10.1016/j.scienta.2015.08.042
  3. Benzothiadiazole-elicited defense priming and systemic acquired resistance against bacterial and viral pathogens of pepper under field conditions vol.6, pp.4, 2012, https://doi.org/10.1007/s11816-012-0234-3
  4. Genome Sequence of the Leaf-Colonizing Bacterium Bacillus sp. Strain 5B6, Isolated from a Cherry Tree vol.194, pp.14, 2012, https://doi.org/10.1128/JB.00682-12