DOI QR코드

DOI QR Code

Variation of Pinitol Content for Domestic Legume Species in Korea

국내 수집 두과식물의 부위별 pinitol 함량 변이

  • Seo, Seung-Min (College of Agric. & Life Sciences, Kyungpook National University) ;
  • Jeong, Yeon-Shin (College of Agric. & Life Sciences, Kyungpook National University) ;
  • Hari, Dhakal Krisna (College of Agric. & Life Sciences, Kyungpook National University) ;
  • Shin, Dong-Hyun (College of Agric. & Life Sciences, Kyungpook National University) ;
  • Lee, In-Jung (College of Agric. & Life Sciences, Kyungpook National University) ;
  • Park, Eun-Sook (College of Agric. & Life Sciences, Kyungpook National University) ;
  • Lee, Jeong-Dong (College of Agric. & Life Sciences, Kyungpook National University) ;
  • Hwang, Young-Hyun (College of Agric. & Life Sciences, Kyungpook National University)
  • 서승민 (경북대학교 농업생명과학대학) ;
  • 정연신 (경북대학교 농업생명과학대학) ;
  • ;
  • 신동현 (경북대학교 농업생명과학대학) ;
  • 이인중 (경북대학교 농업생명과학대학) ;
  • 박은숙 (경북대학교 농업생명과학대학) ;
  • 이정동 (경북대학교 농업생명과학대학) ;
  • 황영현 (경북대학교 농업생명과학대학)
  • Received : 2010.11.27
  • Published : 2011.03.30

Abstract

This study was designed to investigate variation of pinitol content in different parts of seventeen legume species including silk tree (Albizia julibrissin). D-pinitol has been demonstrated to exert insulin-like and anti-inflammatory effects. These legumes were collected from Gyeongsangbuk-Do in Korea. Significant difference in pinitol content was observed among 17 different legume species. However, it was the highest in sericea lespedeza (Lespedeza cuneata). The highest pinitol content was observed in leaf followed by stem, pod shell, seed and root among plant parts. Legume plants which had higher pinitol content in leaves were chinese pea shrub, bastard indigo, wild cowpea and sericea lespedeza, having 59.9 mg/g, 62.2 mg/g, 69.6 mg/g and 65.4 mg/g, respectively. Stem of astragali radix showed the highest pinitol content among all leagumes, which was 34.0 mg/g. In case of root, kudzuvine showed the highest pinitol content followed by licorice and chinese pea shrub, which were 24.6 mg/g, 16.9 mg/g, and 16.5 mg/g, respectively. However, in the case of pod shell and seed, only lablab purpureus and sericea lespedeza showed the highest pinitol content 52.5 mg/g (for pod shell) and 24.9 mg/g (for seed), respectively. Concluding, the sericea lespedeza showed the highest total pinitol content of whole plant followed by chinese redbud, chinese pea shrub, bastard indigo and silk tree. Considering the pinitol content and harvesting yield, sericea lespedeza can be used as a practical medicinal herb.

본 연구에서는 경상북도 일원에서 수집한 자귀나부(Albizia julibrissin)를 포함한 두과식물 17종에서 인체의 혈당저하제의 원료로 사용되는 pinitol 함량을 식물체 부위별로 조사하였는 바, 결과를 요약하면 아래와 같다. 1. 수집한 17개 두과식물 종간에는 pinitol 함량에서 유의적인 차이가 인정되었으며, 종별 총 pinitol 함량에서는 비수리(Lespedeza cuneata)가 가장 높은 값을 보였다. 식물체 부위별로 pinitol 함량을 살펴보면 대체적으로 잎, 줄기, 꼬투리, 종자, 뿌리의 순으로 많았다. 2. 잎에서 비교적 많은 pinitol 함량을 보인 식물은 골담초, 족제비싸리, 돌동부 및 비수리로 각각 59.9 mg/g, 62.2 mg/g, 69.6 mg/g, 65.4 mg/g으로 약 60 mg/g이상을 나타내었고, 줄기의 경우는 황기가 34.0 mg/g으로 비교적 높게 나타났으며, 뿌리에서는 칡이 24.6 mg/g으로 가장 높았으며, 감초와 골담초가 16.9 mg/g, 16.5 mg/g으로 그 다음으로 높았다. 그러나 꼬투리나 종자에서는 제비콩(52.5 mg/g)과 비수리(24.9 mg/g)를 제외하고 pinitol 함량은 잎이나 줄기에 비해 모든 조사식물에서 상대적으로 낮았다. 3. 조사대상 식물체의 pinitol 함량과 수확 가능한 식물체량을 고려할 때, 실제 약용으로 이용 가능성이 가장 높은 식물은 비수리이었다. 비수리의 경우 전국적인 수집을 통해 pinitol 함량이 높은 계통을 선발한다면 이용가능성 이 높은 pinitol 추출용 계통의 선발이나 보다 이용가치가 높은 새로운 품종의 육성도 가능할 것으로 생각된다.

Keywords

References

  1. 고경식, 전의식. 2003. 한국의 야생식물. 일진사
  2. Bates S. H., R. B. Jones, and C. J. Bailey. 2000. Insulin-like effect of pinitol. British Journal of Pharmacology. 130(8): 1944-1948. https://doi.org/10.1038/sj.bjp.0703523
  3. Chang K. Y. 1976. Studies on the resource utilization of leguminous plants. J. Inst. Agricultural Resource Uti. 10: 95-122.
  4. Cheang K. I., P. Essah, and J. E. Nestler. 2004. A paradox: the roles of inositolphosphoglycans in mediating insulin sensitivity and hyper-androgenism in the polycystic ovary syndrome. Hormones (Athens, Greece). 3(4): 244-251. https://doi.org/10.14310/horm.2002.11133
  5. Ding J. L., I. J. Lim, H. D. Lee, and W. S. Cha. 2006. Analysis of minerals, amino acids and vitamin of Lespedeza cuneata. Korean J. Biotechnol. Bioeng. 21(6): 414-417.
  6. Garland S., S. Goheen, P. Donald, L. McDonald, and J. Campbell. 2009. Application of derivatization gas chromatography/mass spectrometry for the identification and quantitation of pinitol in plant roots. Analytical Letters. 42: 2096-2105. https://doi.org/10.1080/00032710903082531
  7. Heath O. V. S. 1965. Diagrams of changes in the distribution of plant dry weight or other variables. Nature. 205: 921.
  8. Jain R., S. Jain, A. Sharma, H. Ito, and T. Hatano. 2007. Isolation of (+)-pinitol and other constituents from the root bark of Tamarindus indica Linn. J. Nat. Med. 61: 355-356. https://doi.org/10.1007/s11418-007-0144-9
  9. Kim J. H., D. H. Kim, J. H. You, M. C. Kwon, H. J. Lee, H. J. Lee, and H. Y. Lee. 2005a. Anticancer and immune activities of the extracts from Amorpha fruticosa L. Korean J. Medicinal Crop Sci. 13(1): 41-47.
  10. Kim J. I., J. C. Kim, H. J. Joo, S. H. Jung, and J. J.Kim. 2005c. Determination of total chrio-inositol conent in selected natural materials and evaluation of the antihyperglycemic effect of pinitol isolated from soybean and carob. Food Sci. Biotechnol. 14(4): 441-445.
  11. Kim M. J., K. H. Yoo, H. S. Park, S. M. Chung, C. J. Chin, Y. S. Choi, and C. H. Chung. 2005b. Effect of pinitol on glucose metabolism and adipocytokines in uncontrolled type 2 diabetes mellitus. Korean Diabetes Journal. 29(4): 344-351.
  12. Kim S. J., C. Park, H. G. Kim, W. C. Shin, and S. Y. Choe. 2004. A study of the estrogenicity of Korean arrowroot (Pueraria thunbergiana). J. Korean Soc. Food Sci. Nutr. 33(1): 16-21. https://doi.org/10.3746/jkfn.2004.33.1.016
  13. Ku B. J., H. J. Kim and K. S. Park. 2007. The clinical study to evaluate the safety and efficacy of D-chiro-inositol in patients with type 2 diabetes. The Korean Journal of Medicine. 72(1): 29-36.
  14. Lee C. H. 2009. Change of pinitol content at different growth stage in soybean plant. The Council of the Graduate School of Kyungpook National University. A thesis for the degree of Master of Agriculture.
  15. Lee H. O., C. H. Kim, J. A. Lim, M. H. Lee and S. H. Baek. 2004. Antimicrobial effect of Puerariae thunbergiana extracts against oral micro-organism. Journal of Dental Hygiene Science. 4(1): 45-48.
  16. Lee S. H., S. Y. Kim, J. J. Kim, T. S. Jang and S. R. Chung. 1999. The isolation of the inhibitory constituents on melanin polymer formation from the leaves of Cercis chinensis. Kor. J. Pharmacogn. 30(4): 397-403.
  17. McManus, M. T., R. L. Bieleski, J. R. Caradus, and D. J. Barker. 2000. Pinitol accumulation in mature leaves of white clover in response to a water deficit. Environmental and Experimental Botany. 43: 11-18. https://doi.org/10.1016/S0098-8472(99)00041-6
  18. Oh W. G., I. C. Jang, G. I. Jeon, E. J. Park, H. R. Park, and S. C. Lee. 2008. Antioxidative activity of extracts from Wistaria floribunda flowers. J. Korean Soc. Food Sci. Nutr. 37(6): 677-683. https://doi.org/10.3746/jkfn.2008.37.6.677
  19. Park J. H., Y. J. Lee, J. J. Kim, Y. C. Shin, and J. C. Kim. 2005. The effect of pinitol on cataractogenesis and antioxidative effect in Streptozotocin induced diabetic rats. J. Korean Ophthalmol. Soc. 46(11): 1886-1893.
  20. Park K. S., J. M. Lee, B. J. Ku, Y. S. Jo, S. K. Lee, K. W. Min, K. A. Han, H. J. Kim, and H. J. Kim. 2008. The effects of D-chiro-inositol on glucose metabolism in 3T3-L1 cells. Korean Diabetes Journal. 32: 196-203. https://doi.org/10.4093/kdj.2008.32.3.196
  21. Streeter J. G. 2001. Simple partial purification of D-pinitol from soybean leaves. Crop Science. 41(6): 1985-1987. https://doi.org/10.2135/cropsci2001.1985
  22. Streeter J. G. D. G. Lohnes, and R. J. Fioritto. 2001. Plant, Cell and Environment. 24: 429-438. https://doi.org/10.1046/j.1365-3040.2001.00690.x
  23. Sun W. Q., X. P. Li, and B. L. Ong. 1999. Preferential accumulation of D-pinitol in Acrostichum aureum gametophytes in response to salt stress. Physiologia Plantarum. 105: 51-57. https://doi.org/10.1034/j.1399-3054.1999.105109.x
  24. Szczecinski P., A. Gryff-Keller, M. Horbowicz, and L. B. Lahuta. 2000. Galactosylpinitols isolated from vetch (Vicia villosa Roth.) seeds. J. Agric. Food Chem. 48: 2717-2720. https://doi.org/10.1021/jf000182g
  25. Yoon S. H., and W. M. Shim. 1996. Enzymatic properties of $beta$-amylase isolated from arrowroot. Korean J. Food & Nutrition. 9(1): 85-91.
  26. Yu G. H., and Y. M. Kwon. 1995. Distribution of canavanine and free amino acids in legumes, Robinia pseudo-acacia, Wistaria floribunda, and Canavalia lineata. Korean J. Ecol. 18(4): 433-440.
  27. Zhoh C. K., B. N. Kim, and G. H. Shin. 2006. Studies on the antioxidative and antimicrobial effects of Lespedeza bicolor extracts. Journal of the Korean Society of Esthetic & Cosmeceutics. 1(2): 109-120.

Cited by

  1. Effect of a Mixed Extract of Fenugreek Seeds and Lespedeza cuneata on Testosterone Deficiency Syndrome vol.47, pp.4, 2015, https://doi.org/10.9721/KJFST.2015.47.4.492
  2. NGS (Next Generation Sequencing)와 컴퓨터 프로그램의 융합적 연구를 통한 비수리(Lespedeza cuneata. G. don)의 생리적 변화에 따른 유용 유전자 분리 vol.8, pp.12, 2011, https://doi.org/10.15207/jkcs.2017.8.12.031