DOI QR코드

DOI QR Code

망간 산화물 촉매상에서 일산화탄소의 산화반응 : 소성온도의 영향

CO Oxidation Over Manganese Oxide Catalysts: Effect of Calcination Temperature

  • Park, Jung-Hyun (Department of Chemical Engineering, Chungbuk National University) ;
  • Kim, Yun-Jung (Department of Chemical Engineering, Chungbuk National University) ;
  • Cho, Kyung-Ho (Department of Chemical Engineering, Chungbuk National University) ;
  • Kim, Eui-Sik (Department of Chemical Engineering, Chungbuk National University) ;
  • Shin, Chae-Ho (Department of Chemical Engineering, Chungbuk National University)
  • 투고 : 2011.01.20
  • 심사 : 2011.02.25
  • 발행 : 2011.03.31

초록

순수한 $MnO_2$ 산화물을 과망간산칼륨과 망간아세테이트를 사용하여 침전법으로 제조하였고 소성온도를 달리하여 CO 산화반응을 수행하였다. 촉매의 물리화학적 특성을 알아보기 위하여 XRD, $N_2$ 흡착, $H_2-TPR$, CO-TPD 등의 특성분석을 수행하였다. $MnO_2$-300 촉매는 9nm 크기 근처의 좁은 기공크기 분포로 존재하며 $181m^2/g$의 높은 비표면적을 보였다. XRD와 $H_2-TPR$ 분석으로 $MnO_2$ 촉매는 $Mn^{4+}$$Mn^{3+}$의 산화상태임을 확인하였다. CO-TPD 분석으로 소성온도가 높아질수록 탈착되는 $CO_2$의 양이 감소하는 것을 확인하였다. $MnO_2$ 촉매의 소성온도에 따른 최적 활성에서는 $300^{\circ}C$에서 소성한 촉매가 가장 좋은 활성을 나타냈으며, $200^{\circ}C$ 이하에서 100%의 CO 전환율을 보였다. 수분 존재하의 CO 산화반응은 활성점에 $H_2O$와 CO의 경쟁 흡착으로 촉매의 활성을 감소시켰으며 수분제거 시 활성이 건조조건과 동일하게 회복되었다.

[ $MnO_2$ ]catalysts were prepared by precipitation method using potassium manganate and manganese acetate. The effect of calcination temperatures of $MnO_2$ catalysts for CO oxidation has been studied and their physicochemical properties were studied by X-ray diffraction (XRD), $N_2$ sorption, temperature programmed reduction of $H_2$ ($H_2-TPR$), and temperature programmed desorption of CO (CO-TPD) techniques. $MnO_2$ calcined at $300^{\circ}C$ catalyst has a large surface area $181m^2/g$ having a narrow pore size distribution at 9 nm. The results of XRD and $H_2-TPR$ showed that the catalysts calcined at different temperatures showed mixed oxidation states of Mn such as $Mn^{4+}$ and $Mn^{3+}$. CO-TPD showed that the quantity of $CO_2$ desorbed was decreased with increasing the calcination temperatures. The catalytic activity over the catalyst calcined at $300^{\circ}C$ exhibited the highest conversion reaching to 100% at $200^{\circ}C$. $H_2O$ vapor showed an inhibiting effect on the efficiency of the catalyst because of co-adsorption with CO on the active sites of manganese oxide catalysts and the initial catalytic activity of CO oxidation could be regenerated by removing $H_2O$ vapor in the reactants.

키워드

참고문헌

  1. Xu, J., Mullins, D. R., and Overbury, S. H., "CO Desorption and Oxidation on $CeO_2$-supported Rh: Evidence for two types of Rh Sites," J. Catal., 243, 158-164 (2006). https://doi.org/10.1016/j.jcat.2006.07.008
  2. Wang, F., and Lu, G., "High performance Rare Earth Oxides LnOx (Ln = La, Ce, Nd, Sm and Dy)-Modified $Pt/SiO_2$ Catalysts for CO Oxidation in the presence of $H_{2}$," J. Power Sources, 181, 120-126 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.040
  3. Xua G., and Zhang Z.-G., "Preferential CO oxidation on Ru/ $Al_2O_3$ Catalyst: An Investigation by considering the simultaneously involved Methanation," J. Power Sources, 157, 64-77 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.028
  4. Van Giezen J. C., van den Berg F. R., Kleinen J. L., van Dillen A. J., and Geus J. W., "The Effect of Water on the Activity of Supported Palladium Catalysts in the Catalytic Combustion of Methane," Catal. Today, 47, 287-293 (1999). https://doi.org/10.1016/S0920-5861(98)00309-5
  5. Wang, F., and Lu, G., "Hydrogen Feed Gas Purification over Bimetallic Cu-Pd Catalysts-Effects of Copper Precursors on CO oxidation," Inter. J. Hyd. Ener., 2010, in press.
  6. Xu, R., Wang, X., Wang, D., Zhou, K., and Li, Y., "Surface Structure Effects in Nanocrystal $MnO_{2}$ and Ag/$MnO_{2}$ Catalytic Oxidation of CO," J. Catal., 237, 426-430 (2006). https://doi.org/10.1016/j.jcat.2005.10.026
  7. Haruta, M., Yamada, N., Kobayashi, T., and Iijima, S., "Gold Catalysts prepared by Coprecipitation for Low-Temperature Oxidation of Hydrogen and of Carbon Monoxide," J. Catal., 115, 301-309 (1989). https://doi.org/10.1016/0021-9517(89)90034-1
  8. Ramesh, K., Chen, L., Chen, F., Liu, Y., Wang, Z., and Han, Y.-F., "Re-investigating the CO Oxidation Mechanism over unsupported MnO, $Mn_2O_3$ and $MnO_2$ Catalysts," Catal. Today, 131, 477-482 (2008). https://doi.org/10.1016/j.cattod.2007.10.061
  9. Strohmeier, B. R., and Hercules, D. M., "Surface Spectroscopic Characterization of Manganese/Aluminum Oxide Catalysts," J. Phys. Chem., 88, 4922-4929 (1984). https://doi.org/10.1021/j150665a026
  10. Hasegawa, Y., Fukumoto, K., Ishima, T., Yamamoto, H., Sano, M., and Miyake, T., "Preparation of Copper-containing Mesoporous Manganese Oxides and their Catalytic Performance for CO Oxidation," Appl. Catal. B: Environ., 89, 420-424 (2009). https://doi.org/10.1016/j.apcatb.2008.12.023
  11. Imamura, S., Sawada, H., Uemura, K., and Ishida, S., "Oxidation of Carbon Monoxide Catalyzed by Manganese-Silver Composite Oxides," J. Catal., 109, 198-205 (1988). https://doi.org/10.1016/0021-9517(88)90198-4
  12. Fortunato, G., Oswald, H. R., and Reller, A., "Spinel-type Oxide Catalysts for Low Temperature CO Oxidation generated by use of an Ultrasonic Aerosol Pyrolysis Process," J. Matar. Chem., 11, 905-911 (2001). https://doi.org/10.1039/b007306g
  13. Morgan, K., Cole, K. J., Goguet, A,, Hardacre, C., Hutchings, G. J., Maguire, N., Shekhtman, S. O., and Taylor, S. H., "TAP studies of CO Oxidation over CuMnOX and Au/CuMnOX Catalysts," J. Catal., 276, 38-48 (2010). https://doi.org/10.1016/j.jcat.2010.08.013
  14. Jones, C., Cole, K. J., Taylor, S. H., Crudace, M. J., and Hutchings, G. J., "Copper Manganese Oxide Catalysts for Ambient Temperature Carbon Monoxide Oxidation: Effect of Calcination on Activity," J. Mol. Catal. A: Chem., 305, 121- 124 (2009). https://doi.org/10.1016/j.molcata.2008.10.027
  15. Djinović, P., Batista, J., and Pintar, A, "Calcination Temperature and CuO loading Dependence on $CuO-CeO_2$ Catalyst Activity for Water-Gas Shift Reaction," Appl. Catal. A: Gen., 347, 23-33 (2008). https://doi.org/10.1016/j.apcata.2008.05.027
  16. Paldey, S., Gedevanishvili, S., Zhang, W., and Rasouli, F., "Evaluation of a Spinel based Pigment System as a CO Oxidation Catalyst," Appl. Catal. B: Environ., 56, 241-250 (2005). https://doi.org/10.1016/j.apcatb.2004.09.013
  17. Xu, R., Wang, X., Wang, D., Zhou, K., and Li, Y., "Surface Structure Effects in Nanocrystal $MnO_2$ and $Ag/MnO_2$ Catalytic Oxidation of CO," J. Catal., 237, 426-430 (2006). https://doi.org/10.1016/j.jcat.2005.10.026
  18. Lee, H. Y., Manivannan, V., and Goodenough, J. B., "Supercapacitor Behavior with KCl Electrolyte," J. Solid State Chem., 144, 220-223 (1999). https://doi.org/10.1006/jssc.1998.8128
  19. Tang, Q., Huang, X., Wu, C., Zhao, P., Chen, Y., and Yang, Y., "Structure and Catalytic Properties of K-doped Manganese Oxide Supported on Alumina," J. Mol. Catal. A: Chem., 306, 48-53 (2009). https://doi.org/10.1016/j.molcata.2009.02.020
  20. Hu, J., Chu, W., and Shi, L., "Effects of Carrier and Mn loading on Supported Manganese Oxide Catalysts for Catalytic Combustion of Methane," J. Nat. Gas Chem., 17, 159-164 (2008). https://doi.org/10.1016/S1003-9953(08)60044-4
  21. Hamoudi, S., Larachi, F., Adnot, A., and Sayari, A., "Characterization of Spent $MnO_2/CeO_2$ Wet Oixdation Catalyst by TPO-MS, XPS, and S-SIMS," J. Catal., 185, 333-344 (1999). https://doi.org/10.1006/jcat.1999.2519
  22. Chen, Y.-Z., Liaw, B.-J., and Huang, C.-W., "Selective Oxidation of CO in Excess Hydrogen over $CuO/Ce_xSn_1−xO_2$ Catalysts," Appl. Catal. A: Gen., 302, 168-176 (2006). https://doi.org/10.1016/j.apcata.2005.12.032
  23. Lee, H. C., and Kim, D. H., "Kinetics of CO and $H_2$ Oxidation over $CuO-CeO_2$ Catalyst in $H_2$ Mixtures with $CO_2$ and $H_2O$," Catal. Today, 132, 109-116 (2008). https://doi.org/10.1016/j.cattod.2007.12.028
  24. Wu, Z., Zhu, H., Qin, Z., Wang, H., Ding, J., Huang, L., and Wang, J., "CO Preferential Oxidation in $H_2$-rich Stream over a $CuO/CeO_2$ Catalyst with High $H_2O$ and $CO_2$ tolerance," Fuel, 2010 in press.
  25. Avgouropoulos, G., and Ioannides, T., "Selective CO oxidation over $CuO-CeO_2$ Catalysts prepared via the Urea-Nitate Combustion Method," Appl. Catal. A: Gen., 244, 155-167 (2003). https://doi.org/10.1016/S0926-860X(02)00558-6
  26. Papavasiliou, J., Avgouropoulos, G., and Ioannides, T., "Combined Steam Reforming of Methanol over Cu-Mn Spinel Oxide Catalysts," J. Catal., 251, 7-20 (2007). https://doi.org/10.1016/j.jcat.2007.07.025