Investigation of Growth Stage Related Genes in Dark-banded Rockfish Sebastes inermis

볼락(Sebastes inermis)의 성장단계별 차등발현 유전자 탐색

  • 장요순 (한국해양연구원 동해연구소 동해특성연구부)
  • Received : 2010.11.17
  • Accepted : 2010.12.21
  • Published : 2011.03.31

Abstract

Expression analysis of development-related genes was conducted using differential screening of 6-month-old [18M(-), 6M-18M] specific and 18-month-old [6M(-), 18M-6M] specific subtracted cDNA libraries constructed by subtractive hybridization using skeletal muscle of 6- and 18-month-old dark-banded rockfish Sebastes inermis. A total 202 cDNA clones displaying different expression levels in each stage were obtained; among them, 32 clones showing up-regulation were finally selected for further expression analysis. We sequenced the clones and analyzed individual sequences. Genes expressed specifically in 6-month-old skeletal muscle were identified as myosin, adenylate kinase, calsequestrin, dystrobrevin beta, and diphosphate kinase-Z1. Genes showing strong expression in 18-month-old rockfish were identified as desmin, TGFBR2 (transforming growth factor-beta receptor), muscle-type creatine kinase, and cathepsin D. Expression of these genes was checked further in 6-18-30-42 month-old dark-banded rock fish. Rapid reduction of expression was observed in dystrobrevin beta and diphosphate kinase. However, expression of creatine kinase (muscle type) and cathepsin D increased as dark-banded rockfish grew, and remained even after 18 months. The results reported here demonstrate that genes related to muscles contract are expressed at an early stage of development, and genes controlling energy in muscles are predominantly expressed at a late developmental stage.

볼락의 성장단계에 따른 차등발현 유전자를 탐색하기 위하여 6개월령 및 18개월령 근육조직을 사용하여 subtracted cDNA library를 제작하였고, 각각의 연령에서 발현량 차이를 나타낸 202개의 cDNA 단편을 확보하였으며, 발현량 차이가 뚜렷한 32개의 cDNA 클론은 성장단계별 특이발현 후 보유전자로 선발하여 염기서열을 분석하였다. Myosin, adenylate kinase, calsequestrin, dystrobrevin beta, diphosphate kinase 유전자는 6개월령 근육조직에서 발현량이 많았으며, desmin, TGFBR2 (transforming growth factor-beta receptor), creatine kinase (muscle type), cathepsin D 유전자는 18개월령 근육조직에서 발현량이 많았다. 볼락의 성장초기와 성장절정기에서 차등발현 양상을 나타낸 유전자는 6, 18, 30, 42개월령 근육조직에서 연령 증가에 따른 발현양상을 분석하였으며, dystrobrevin beta와 diphosphate kinase-Z1은 6개월령 이후에는 발현량이 급격히 감소하여 18개월령, 30개월령 및 42개월령에서는 발현량이 극히 적었으며, creatine kinase (muscle type)와 cathepsin D 유전자는 연령 이 증가함에 따라 발현량이 증가되어 18개월령 이후, 30개월령과 42개월령 근육조직에서도 발현량이 많았다. 이와 같이 성장단계에 따른 차등발현 유전자를 탐색하고 연령 증가에 따른 발현양상을 비교 분석한 결과로부터 본 연구에서는 어류의 성장 초기단계 근육조직에서는 근육수축 관련 유전자가 많이 발현되고, 성장 절정기에는 근육 내 에너지 양 조절 관련 유전자가 많이 발현되는 것을 확인하였다.

Keywords

References

  1. 김용억. 1978. 어류학 총론. 태화출판사, pp. 159-170.
  2. 김용억∙한경호. 1993. 볼락, Sebastes inermis의 초기생활사에 관한 연구. 1. 인위적 방법에 의한 수조내에서의 난발생과정과 부화자어의 형태. 한국수산학회지, 26: 458-464.
  3. 김용억∙한경호∙변순규. 1993. 볼락, Sebastes inermis의 초기생활사에 관한 연구. 2. 산출 자치어의 외부형태 및 골격발달. 한국수산학회지, 26: 465-476.
  4. 박영병∙어윤양∙황현숙∙이선희∙이정아∙박수현. 2006. 조피 볼락 양식의 경제성 분석 보고서(보고서번호: IB92007-04190662), 해양수산부(주관부처).
  5. 최희정∙홍경표∙오승용∙노충환∙박용주∙명정구∙김종만∙허준욱∙장창익∙박인석. 2005. 양식산 볼락, Sebastes inermis Cucier의 성장 특성. 한국양식학회지, 18: 147-153.
  6. Bertioli, D.J., U.H.A. Schichter, M.J. Adams, P.R. Burrows, H.H. Steinbiss and J.F. Antoniw. 1995. An analysis of differential display shows a strong bias towards high copy number mRNAs. Nucleic Acids Res., 23: 4520-4523. https://doi.org/10.1093/nar/23.21.4520
  7. Blake, D.J., R. Nawrotzki, N.Y. Loh, D.C. Gorecki and K.E. Davies. 1998. Beta-dystrobrevin, a member of the dystrophin-related protein family. Proc. Nat. Acad. Sci., 95: 241-246. https://doi.org/10.1073/pnas.95.1.241
  8. Chen, Q., R. Hui, C. Sun, X. Gu, M. Luo and X.F. Zheng. 2006. Soluble expression, purification, and stabilization of a proapoptotic human protein, CARP. Protein Expr. Purif., 45: 329-334. https://doi.org/10.1016/j.pep.2005.07.011
  9. Dawson, D.M., H.M. Eppenberger and M.E. Eppenberger. 1968. Multiple molecular forms of creatine kinases. Ann. N.Y. Acad. Sci., 151: 616-626. https://doi.org/10.1111/j.1749-6632.1968.tb11922.x
  10. Duguin, J.L. and M.C. Dinauer. 1990. Library subtraction of in vitro cDNA libraries to identify differentially expressed genes in scrapie infection. Nucleic Acids Res., 18: 2789-2792. https://doi.org/10.1093/nar/18.9.2789
  11. Florini, J.R., D.Z. Ewton and S.L. Roof. 1991. Insulin-like growth factor-1 stimulates terminal differentiation by induction of myogenin gene expression. Mol. Endocrinol., 5: 718-724. https://doi.org/10.1210/mend-5-5-718
  12. Fujii, J., H.F. Willard and D.H. MacLennan. 1990. Characterization and localization to human chromosome 1 of human fasttwitch skeletal muscle calsequestrin gene. Somat. Cell Molec. Genet., 16: 185-189. https://doi.org/10.1007/BF01233048
  13. Hara, E., T. Kato, S. Nakada, L. Sekiya and K. Oda. 1991. Subtractive cDNA cloning using oligo (dT)30-latex and PCR: isolation of cDNA clones specific to undifferentiated human embryonal carcinoma cells. Nucleic Acids Res., 19: 7097-7104. https://doi.org/10.1093/nar/19.25.7097
  14. Johnston, I.A. 1999. Muscle development and growth: potential implications for flesh quality in fish. Aquaculture, 177: 99-115. https://doi.org/10.1016/S0044-8486(99)00072-1
  15. Li, Z., A. Lilienbaum, G. Butler-Browne and D. Paulin. 1989. Human desmin-coding gene: complete nucleotide sequence, characterization and regulation of expression during myogenesis and development. Gene, 78: 243-254. https://doi.org/10.1016/0378-1119(89)90227-8
  16. Liang, P., L. Averboukh, K. Keyomarsi, R. Sager and A.B. Pardee. 1992. Differential display and cloning of messenger RNAs from human breast cancer versus mammary epithelial cells. Cancer Res., 52: 6966-6968.
  17. Lin, H.Y., X.-F. Wang, E. Ng-Eaton, R.A. Weinberg and H.F. Lodish. 1992. Expression cloning of the TGF-beta type II receptor, a functional transmembrane serine/threonine kinase. Cell, 68: 775-785. https://doi.org/10.1016/0092-8674(92)90152-3
  18. Lyons, G.E., S. Schiaflino, D. Sassoon, P. Barton and M. Buckingham. 1990. Developmental regulation of myosin gene expression in mouse cardiac muscle. J. C. B., 111: 2427-2436.
  19. McPherron, A.C., A.M. Lawler and S.-J. Lee. 1997. Regulation of skeletal muscle mass in mice by a new TGF-b superfamily member. Nature, 387: 83-90. https://doi.org/10.1038/387083a0
  20. Molkentin, J.D. and E.N. Olson. 1996. Defining the regulatory networks for muscle development. Curr. Opin. Genet. Dev., 6: 445-453. https://doi.org/10.1016/S0959-437X(96)80066-9
  21. Mugue, N.S. and N.D. Ozernyuk. 2006. Comparative Structural Analysis of Myosin Light Chains and Gene Duplication in Fish. Biol. Bul., 33: 30-34. https://doi.org/10.1134/S1062359006010043
  22. Olson, E.N. 1992. Interplay between proliferation and differentiation within the myogenic lineage. Dev. Biol., 154: 261-272. https://doi.org/10.1016/0012-1606(92)90066-P
  23. Silberstein, L., S.G. Webster, M. Travis and H.M. Blau. 1986. Developmental progression of myosin gene expression in cultured muscle cells. Cell, 46: 1075-1081. https://doi.org/10.1016/0092-8674(86)90707-5
  24. Somero, G.N. and J.J. Childress. 1980. A violation of the metabolism- size scaling paradigm: activities of glycolytic enzymes in muscle increase in larger-size fish. Physiol. Zool., 53: 322-337. https://doi.org/10.1086/physzool.53.3.30155794
  25. Steinfeld, R., K. Reinhardt, K. Schreiber, M. Hillebrand, R. Kraetzner, W. Bruck, P. Saftig and J. Gartner. 2006. Cathepsin D deficiency is associated with a human neurodegenerative disorder. Am. J. Hum. Genet., 78: 988-998. https://doi.org/10.1086/504159
  26. Weatherley, A.H., H.S. Gill and A.F. Lobo. 1988. Recruitment and maximal diameter of axial muscle fibres in teleosts and their relationship to somatic muscle growth and ultimate size. J. Fish Biol., 33: 851-859.
  27. Welsh, J., K. Chada, S.S. Dalal, D. Ralph, L. Cheng and M. McClelland. 1992. Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res., 20: 4965-4970. https://doi.org/10.1093/nar/20.19.4965
  28. Yen, C.-H., Y.-S. Chen, M.-S. Wu, C.-W. Chen, C.-H. Yuan, K.-W. Pan, Y.-N. Chang, N.-N. Chuang and C.-Y. Chang. 2008. Differential display of grouper iridovirus-infected grouper cells by immunostaining. Biochem. Biophy. Res. Comm., 372: 674-680. https://doi.org/10.1016/j.bbrc.2008.05.126