Molecular Characterization of Metallothionein Gene of the Korean Bitterling Acheilognathus signifer (Cyprinidae)

묵납자루 (Acheilognathus signifer; Cyprinidae) metallothionein 유전자의 클로닝 및 특징 분석

  • Lee, Sang-Yoon (Department of Marine Bio-Materials & Aquaculture, Pukyong National University) ;
  • Bang, In-Chul (Department of Marine Biotechnology, Soonchunhyang University) ;
  • Nam, Yoon-Kwon (Department of Marine Bio-Materials & Aquaculture, Pukyong National University)
  • 이상윤 (부경대학교 해양바이오신소재학과) ;
  • 방인철 (순천향대학교 해양생명공학과) ;
  • 남윤권 (부경대학교 해양바이오신소재학과)
  • Received : 2011.02.07
  • Accepted : 2011.03.18
  • Published : 2011.03.31

Abstract

Genetic determinant for metallothionein (MT), a cysteine-rich protein playing essential roles in metal detoxification and homeostasis, was characterized in the Korean bitterling (Acheilognathus signifer, Cyprinidae), an endemic fish species. The full-length A. signifer MT (AsMT) cDNA (551 bp) is composed of a single open-reading frame (ORF) to encode a polypeptide of 60 amino acids containing 20 cysteine residues whose positions are conserved in most cypriniform MTs. At the genomic level, the AsMT (2,593 bp spanning the 5'-flanking region to the 3'-untranslated region) represented a conserved tripartite (three exons interrupted by two introns) structure with AT-rich introns. The upstream regulatory region (-1,914 bp from the ATG initiation codon) of AsMT displayed various sites and motifs for transcription factors involved in the metal-mediated regulation and stress/immune responses. The AsMT transcript was ubiquitously detected in various organs with variable expression levels, where the ovary and intestine showed the highest expression, while the heart and skeletal muscle represented the lowest level. During an exposure to copper (immersion in $0.5\;{\mu}M$ Cu for 48 h), the levels of AsMT transcripts were significantly elevated in the liver (more than 3.5-fold), moderately in the gill, kidney, and spleen (ranging from 1.5- to 2.5-fold), and barely in the brain and intestine. Results of this study could form a useful basis to explore the metal-related stress physiology of this endangered fish species.

한반도 고유종인 묵납자루(Acheilognathus signifer)로부터 metallothionein(MT) 유전자를 분리하고 그 유전자 구조와 발현 특징을 분석하였다. 묵납자루 MT cDNA는 20개의 시스테인(cysteines)을 포함한 60개의 아미노산을 암호화하고 있었고, 이들 시스테인 잔기들의 위치는 잉어목 어류에서 잘 보전되어 있었다. 묵납자루 MT 유전자는 3개의 exon과 2개의 intron으로 구성되어 있었으며 intron영역은 A/T조성 빈도가 높았다. 생물정보 분석법을 통해 묵납자루 MT 유전자의 프로모터 영역은 중금속 조절 빛 스트레스/면역관련 조절에 관련한 다양한 전사 조절인자들의 부착 위치들이 보유하고 있는 것으로 예측되었다. Real-time RT-PCR 분석법을 이용한 묵납자루 MT mRNA의 조직 별 발현 수준을 조사한 결과, 난소와 장 조직에서의 발현 수준이 가장 높았으며 성장과 근욕 조직에서의 발현 수준이 가장 낮은 것으로 확인되었다. 구리를 이용한 중금속 노출 실험(구리 농도 $0.5\;{\mu}M$을 이용, 48 시간 동안 침지 처리)을 통하여 간 조직에서 MT mRNA 발현이 가장 많이 유도되었고(3.5배 이상), 비장, 신장 및 아가미에서도 유의적인 발현양의 증가(1.5~2.5배)가 관찰되었다. 그러나 뇌 및 장 조직에서는 MT 발현양의 변화가 없었다. 본 연구 결과는 향후 멸종위기 고유종인 묵납자루의 중금속 관련 스트레스 연구에 유용한 기초 자료를 제공할 수 있으리라 기대된다.

Keywords

References

  1. Alvarado, N.E., I. Quesada, K. Hylland, I. Marigomez and M. Soto. 2006. Quantitative changes in metallothionein expression in target cell-types in the gills of turbot (Scophthalmus maximus) exposed to Cd, Cu, Zn and after a depuration treatment. Aquat. Toxicol., 77: 64-77. https://doi.org/10.1016/j.aquatox.2005.10.017
  2. Andrews, G.K. 2000. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem. Pharmacol., 59: 95-104. https://doi.org/10.1016/S0006-2952(99)00301-9
  3. Atif, F., M. Kaur, S. Yousuf and S. Raisuddin. 2006. In vitro free radical scavenging activity of hepatic metallothionein induced in an Indian freshwater fish, Channa punctata Bloch. Chem. Biol. Interact., 162: 172-180. https://doi.org/10.1016/j.cbi.2006.06.006
  4. Baek, H.M., H.B. Song and O.G. Kwon. 2003. Sexual maturation and the spawning season of the Korean bitterling, Acheilognathus signifer in upper reaches of the Hongcheon river. Korean J. Ichthyol., 15: 278-288.
  5. Baek, H.M. and H.B. Song. 2005a. Digestive apparatus and food of the Korean bitterling, Acheilognathus signifer (Cyprinidae). Korean J. Ichthyol., 17: 57-63.
  6. Baek, H.M. and H.B. Song. 2005b. Habitat selection and environmental characters of Acheilognathus signifer. Korean J. Limnol., 38: 352-360.
  7. Baek, H.M. and H.B. Song. 2005c. Spawning in mussel and adaptation strategy of Acheilognathus signifer (Cyprinidae: Acheilognathinae). Korean J. Ichthyol., 17: 105-111.
  8. Baek, H.M. and H.B. Song. 2006. Sexual dimorphism and secondary sexual characters of Acheilognathus signifer (Cyprinidae: Acheilognathinae). Korean J. Ichthyol., 18: 141-147.
  9. Berg, L.S. 1907. Description of a new cyprinoid fish Acheilognathus signifer from Korea with a synopsis of all the Korean Rhodeina. Ann. Mag. Nat. Hist., 19: 159-163. https://doi.org/10.1080/00222930709487247
  10. Bi, Y., G.X. Lin, L. Millecchia and Q. Ma. 2006. Superinduction of metallothionein I by inhibition of protein synthesis: Role of a labile repressor in MTF-1 mediated gene transcription. J. Biochem. Mol. Toxicol., 20: 57-68. https://doi.org/10.1002/jbt.20116
  11. Cerqueira, C.C.C. and M.N. Fernandes. 2002. Gill tissue recovery after copper exposure and blood parameter responses in the tropical fish Prochilodus scrofa. Ecotoxicol. Environ. Saf., 52: 83-91. https://doi.org/10.1006/eesa.2002.2164
  12. Chen, W., J.A.C. John, C. Lin, H. Lin, S. Wu, C. Lin and C. Chang. 2004. Expression of metallothionein gene during embryonic and early larval development in zebrafish. Aquat. Toxicol., 69: 215-227. https://doi.org/10.1016/j.aquatox.2004.05.004
  13. Cho, Y.S., B.N. Choi, E.M. Ha, K.H. Kim, S.K. Kim, D.S. Kim and Y.K. Nam. 2005. Shark (Scyliorhinus torazame) metallothionein: cDNA cloning, genomic sequence, and expression analysis. Mar. Biotechnol., 7: 350-362. https://doi.org/10.1007/s10126-004-0043-y
  14. Cho, Y.S., S.Y. Lee, K.-Y. Kim and Y.K. Nam. 2009. Two metallothionein genes from mud loach Misgurnus mizolepis (Teleostei; Cypriniformes): gene structure, genomic organization, and mRNA expression analysis. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 153: 317-326. https://doi.org/10.1016/j.cbpb.2009.04.002
  15. Cho, Y.S., S.Y. Lee, K.-Y. Kim, I.C. Bang, D.S. Kim and Y.K. Nam. 2008. Gene structure and expression of metallothionein during metal exposures in Hemibarbus mylodon. Ecotoxicol. Environ. Saf., 71: 125-137. https://doi.org/10.1016/j.ecoenv.2007.08.005
  16. Coyle, P., J.C. Philcox, L.C. Carey and A.M. Rofe. 2002. Metallothionein: The multipurpose protein. Cell Mol. Life Sci., 59: 627-647. https://doi.org/10.1007/s00018-002-8454-2
  17. Dang, Z.C., M.H.G. Berntssen, A.K. Lundebye, G. Flik, S.E. Wendelaar Bonga and R.A.C. Lock. 2001. Metallothionein and cortisol receptor expression in gills of Atlantic salmon, Salmo salar, exposed to dietary cadmium. Aquat. Toxicol., 53: 91-101. https://doi.org/10.1016/S0166-445X(00)00168-5
  18. Emi, Y., S. Ikushiro and T. Iyanagi. 1996. Xenobiotic responsive element-mediated transcriptional activation in the UDP-glucuronosyltransferase family 1 gene complex. J. Biol. Chem., 271: 3952-3958. https://doi.org/10.1074/jbc.271.7.3952
  19. Grosell, M. and C.M. Wood. 2002. Copper uptake across rainbow trout gills: Mechanisms of apical entry. J. Exp. Biol., 205: 1179-1188.
  20. Haq, F., M. Mahoney and J. Koropatnick. 2003. Signaling events for metallothionein induction. Mutat. Res. Fund. Mol. Mech. Mutagen., 533: 211-226. https://doi.org/10.1016/j.mrfmmm.2003.07.014
  21. He, P., M. Xu and H. Ren. 2007. Cloning and functional characterization of 5′-upstream region of metallothionein- I gene from crucian carp (Carassius cuvieri). Int. J. Biochem. Cell Biol., 39: 832-841. https://doi.org/10.1016/j.biocel.2007.01.008
  22. Hollis, L., C. Hogstrand and C.M. Wood. 2001. Tissue-specific cadmium accumulation, metallothionein induction, and tissue zinc and copper levels during chronic sublethal cadmium exposure in juvenile rainbow trout. Arch. Environ. Contam. Toxicol., 41: 468-474. https://doi.org/10.1007/s002440010273
  23. Kim, I.S. and C.H. Kim. 1989. A study on the egg development and taxonomy of two bitterlings, Acheilognatus limbata and A. signifer (Pisces, Cyprinidae) from Korea. Korean J. Zool., 32: 22-33.
  24. Knapen, D., E.S. Redeker, I. Inacio, W. De Coen, E. Verheyen and R. Blust. 2005. New metallothionein mRNAs in Gobio gobio reveal at least three gene duplication events in cyprinid metallothionein evolution. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol., 140: 347-355. https://doi.org/10.1016/j.cca.2005.03.002
  25. Kock, G., R. Hofer and S. Wögrath, 1995. Accumulation of trace metals (Cd, Pb, Cu, Zn) in arctic char (Salvelinus alpinus) from oligotrophic alpine lakes: Relation to alkalinity. Can. J. Fish Aquat. Sci., 52: 2367-2376. https://doi.org/10.1139/f95-829
  26. Kurose, K., M. Tohkin and R. Hasegawa. 2005. Transcription factor NF2d9 (LBP-1a) interacts with the positive regulatory element for the xenobiotic responsive element. Biochim. Biophys. Acta. Gene Struct. Expr., 1727: 141-144. https://doi.org/10.1016/j.bbaexp.2004.12.003
  27. Laity, J.H. and G.K. Andrews. 2007. Understanding the mechanisms of zinc-sensing by metal-response element binding transcription factor-1 (MTF-1). Arch. Biochem. Biophys., 463: 201-210. https://doi.org/10.1016/j.abb.2007.03.019
  28. Langston, W.J., B.S. Chesman, G.R. Burt, N.D. Pope and J. McEvoy. 2002. Metallothionein in liver of eels Anguilla anguilla from the Thames Estuary: an indicator of environmental quality? Mar. Environ. Res., 53: 263-293. https://doi.org/10.1016/S0141-1136(01)00113-1
  29. Lin, C., J.A.C. John, L.W. Ou, J. Chen, C. Lin and C. Chang. 2004. Cloning and characterization of metallothionein gene in ayu Plecoglossus altivelis. Aquat. Toxicol., 66: 111-124. https://doi.org/10.1016/j.aquatox.2003.06.003
  30. Mazon, A.F., C.C.C. Cerqueira and M.N. Fernandes. 2002. Gill cellular changes induced by copper exposure in the South American tropical freshwater fish Prochilodus scrofa. Environ. Res., 88: 52-63. https://doi.org/10.1006/enrs.2001.4315
  31. Miracle, A.L. and G.T. Ankley. 2005. Ecotoxicogenomics: Linkages between exposure and effects in assessing risks of aquatic contaminants to fish. Reprod. Toxicol., 19: 321-326. https://doi.org/10.1016/j.reprotox.2004.06.007
  32. Nam, Y.K., Y.S. Cho, K.-Y. Kim, I.C. Bang, K.H. Kim, S.K. Kim and D.S. Kim. 2006. Characterization of copper, zinc superoxide dismutase from a cartilaginous shark species, Scyliorhinus torazame (Carcharhiniformes). Fish Physiol. Biochem., 32: 305-315. https://doi.org/10.1007/s10695-006-9107-4
  33. Oh, M.K., J.Y. Park, M.J. You, E.J. Kang, S.G. Yang, E.O. Kim, Y.C. Jo, I.S. Park, C.H. Kim and I. Toshihiro. 2008. Histological study of oculocutaneous albinism in the Korean bitterling, Acheilognathus signifier (Osteichthyes; Cyprinidae). Korean J. Ichthyol., 20: 167-172.
  34. Park, E.Y. and H.M. Rho. 2002. The transcriptional activation of the human copper/zinc superoxide dismutase gene by 2,3,7,8-tetrachlorodibenzo-p-dioxin through two different regulator sites, the antioxidant responsive element and xenobiotic responsive element. Mol. Cell Biochem., 240: 47-55. https://doi.org/10.1023/A:1020600509965
  35. Ren, H., M. Xu, P. He, N. Muto, N. Itoh, K. Tanaka, J. Xing and M. Chu. 2006. Cloning of crucian carp (Carassius cuvieri) metallothionein-II gene and characterization of its gene promoter region. Biochem. Biophys. Res. Commun., 342: 1297-1304. https://doi.org/10.1016/j.bbrc.2006.02.082
  36. Schmittgen, T.D. and K.J. Livak. 2008. Analyzing real-time PCR data by the comparative CT method. Nat. Protocols., 3: 1101-1108. https://doi.org/10.1038/nprot.2008.73
  37. Scudiero, R., P.A. Temussi and E. Parisi. 2005. Fish and mammalian metallothioneins: A comparative study. Gene, 345: 21-26. https://doi.org/10.1016/j.gene.2004.11.024
  38. Snape, J.R., S.J. Maund, D.B. Pickford and T.H. Hutchinson. 2004. Ecotoxicogenomics: The challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquat. Toxicol., 67: 143-154. https://doi.org/10.1016/j.aquatox.2003.11.011
  39. Thirumoorthy, N., K.T.M. Kumar, A.S. Sundar, L. Panayappan and M. Chatterjee. 2007. Metallothionein: An overview. World J. Gastroenterol., 13: 993-996. https://doi.org/10.3748/wjg.v13.i7.993
  40. Ueda, T., H. Naoi and R. Arai. 2001. Flexibility on the karyotype evolution in bitterlings (Pisces, Cyprinidae). Genetica, 111: 423-432. https://doi.org/10.1023/A:1013703717626
  41. Woo, S., S. Yum, J.H. Jung, W.J. Shim, C.H. Lee and T.K. Lee. 2006. Heavy metal-induced differential gene expression of metallothionein in Javanese medaka, Oryzias javanicus. Mar. Biotechnol., 8: 654-662. https://doi.org/10.1007/s10126-006-6046-0