References
- A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode", Nature, Vol. 238, 1972, pp. 237-38. https://doi.org/10.1038/238237a0
- J. P. Best and D. E. Dunstan, "Nanotechnology for photolytic hydrogen production: Colloidal anodic oxidation", Int. J. Hydrogen Energy, Vol. 34, 2009, pp. 7562-7578. https://doi.org/10.1016/j.ijhydene.2009.07.051
- X. Chen, S Shen, L. Guo, S. S. Mao, "Semiconductor- based photocatalytic hydrogen generation", Chem. Rev. Vol. 110, 2010, pp. 6503-6570. https://doi.org/10.1021/cr1001645
- M. Ashokkumar, "An overview on semicondutor particulate systems for photoproduction of hydrogen", Int. J. Hydrogen Energy, Vol. 23, 1998, pp. 427-438. https://doi.org/10.1016/S0360-3199(97)00103-1
- D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, E. C. Dickey, "Titanium dioxide nanotube arrays prepared by anodic oxidation", J. Mater. Res. Vol. 16, 2001, pp. 3331-3337. https://doi.org/10.1557/JMR.2001.0457
- O.K. Varghese, D. Gong, M. Paulose, C. A. Grimes, E. C. Dickey, "Crystallization and hightemperature structural stability of titanium oxide nanotube arrays", J. Mater. Res. Vol. 18, 2003, pp. 156-162. https://doi.org/10.1557/JMR.2003.0022
- G. K. Mor, O. K. Vargheese, M. Paulose, N. Mukherjee, C. A. Grimes, "Fabrication of tapered, conical-shaped titania nanotubes", J. Mater. Res. Vol. 18, 2003, pp. 2588-2593. https://doi.org/10.1557/JMR.2003.0362
- G. K. Mor, K. Shankar, M. Paulose, O. K. Vargheese, C. A. Grimes, "Enhanced photocleavage of water using titania nanotube arrays", Nano Lett. Vol. 5, 2005, pp. 191-195. https://doi.org/10.1021/nl048301k
- M. Paulose, G. K. Mor, O. K. Vargheese, K. Shankar, C. A. Grimes, "Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays", J. Photochem. Photobiol. A: Chem. Vol. 178, 2006, pp. 8-15. https://doi.org/10.1016/j.jphotochem.2005.06.013
- K. S. Raja, V. K. Mahajan, M. Misra, "Determination of photo conversion efficiency of nanotubular titanium oxide photo-electrochemical cell for solar hydrogen generation", J. Power Sources Vol. 159, 2006, pp. 1258-1265. https://doi.org/10.1016/j.jpowsour.2005.12.036
-
M. Kitano, M. Takeuchi, M. Matsuoka, J. M. Thomas, M. Anpo, "Photocatalytic water splitting using Pt-loaded visible light-responsive
$TiO_{2}$ thin film photocatalysts", Catalysis Today, Vol. 120, 2007, pp. 133-138. https://doi.org/10.1016/j.cattod.2006.07.043 -
J. Yoon, E. Shim, S. Bae, H Joo, "Application of immobilized nanotubular
$TiO_{2}$ electrode for photocatalytic hydrogen evolution: Reduction of hexavalent chromium (Cr(VI)) in water", J. Hazard. Mater. Vol. 161, 2009, pp. 1069-1074. https://doi.org/10.1016/j.jhazmat.2008.04.057 -
S. Bae, E. Shim, J. Yoon, H. Joo, "Enzymatic hydrogen production by light-sensitized anodized tubular
$TiO_{2}$ photoanode", Sol. Energy Mater. Sol. Cells, Vol. 92, 2008, pp. 402-409. https://doi.org/10.1016/j.solmat.2007.09.019 - S. Bae, J. Kang, E. Shim, J. Yoon, H. Joo, "Correlation of electrical and physical properties of photoanode with hydrogen evolution in enzymatic photo-electrochemical cell", J. Power Sources, Vol. 179, 2008, pp. 863-869. https://doi.org/10.1016/j.jpowsour.2007.12.117
- S. Bae, E. Shim, J. Yoon, H. Joo, "Photoanodic and cathodic role of anodized tubular titania in light-sensitized enzymatic hydrogen production", J. Power Sources, Vol. 185, 2008, pp. 439-444. https://doi.org/10.1016/j.jpowsour.2008.06.094
-
E. Shim, Y. Park, S. Bae, J. Yoon, H. Joo, "Phtocurrent by anodized
$TiO_{2}$ photoelectrode for enzymatic hydrogen production and chromium( VI) reduction", Int. J. Hydrogen Energy, Vol. 33, 2008, pp. 5193-5198. https://doi.org/10.1016/j.ijhydene.2008.05.011 -
허아영 외, "금속담지된
$TiO_{2}$ 나노튜브를 활용한 Cr(VI)환원의 광화학적 효율연구", 한국수소 및 신에너지학회 논문집, Vol. 21, 2010, pp 301-306. - 심은정 외, "광바이오 수소제조 시스템에서의 쏠라셀 및 나노여과 멤브레인 활용", 한국수소 및 신에너지학회 논문집, Vol. 18, 2007, pp. 151-156.
- 배상현 외, "광어노드 수소 제조와 광전기 특성에 관한 상관관계 연구", 한국수소 및 신에너지학회 논문집, Vol. 18, 2007, pp 244-249.
- S. Lawniczak, P. Lecomte, J. Ehrhardt, "Behavior of hexavalent chromium in a polluted groundwater: Redox processes and immobilization in soils", Environ. Sci. Technol., Vol. 35, 2001, pp. 1350-1357. https://doi.org/10.1021/es001073l
- M. A. Schlautman, I. Han, "Effects of pH and dissolved oxygen on the reduction of hexavalent chromium by dissolved ferrous iron in poorly buffered aqueous systems", Wat. Res., Vol. 35, 2001, pp. 1534-1546. https://doi.org/10.1016/S0043-1354(00)00408-5
- F. O. Bryant, M.W.W Adams, "Characterization of hydrogenase from the hyperthermophilic archaebacterium pyrococcus furiosus", J. Biol. Chem., Vol. 264, 1983, pp. 5070-5079.
- V. Osokov, B. Kebbekus, D. Chesbro, "Field determination of Cr(VI) in water at low ppb level", Anal. Lett. Vol. 29, 1996, pp. 1829-1850. https://doi.org/10.1080/00032719608001527
- X. Wang, S. O. Pehkonen, A. K. Ray, "Removal of aqueous Cr(VI) by a combination of photocatalytic reduction and coprecipitation", Ind. Eng. Chem. Res., Vol. 43, 2004, pp. 1665-1672. https://doi.org/10.1021/ie030580j
-
O. K. Varghese, M. Paulose, T. J. LaTempa, C. A. Grimes, "High-rate solar photocatalytic conversion of
$CO_{2}$ and water vapor to hydrocarbon fuels", Nano Lett., Vol. 9, 2009, pp. 731-737. https://doi.org/10.1021/nl803258p -
M. Park, A. Heo, E. Shim, J. Yoon, H. Joo, "Effect of length of anodized
$TiO_{2}$ tubes on photoreactivity: Photocurrent, Cr(VI) reduction and$H_{2}$ evolution", J. Power Sources, Vol. 195, 2010, pp. 5144-5149. https://doi.org/10.1016/j.jpowsour.2010.02.065