DOI QR코드

DOI QR Code

Effect of TiO2 Nanotube Length on Photocatalytic Activity with Different Light Intensities: Cr(VI) Reduction and Hydrogen Production

광량 및 TiO2 나노튜브 길이별 광활성 연구: Cr(VI)환원 및 수소제조

  • Joo, Hyun-Ku (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Shim, Eun-Jung (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Lee, Jae-Min (Dept. of Chemical and Biomolecular. Engr., Yonsei Univ.) ;
  • Yoon, Jae-Kyung (Hydrogen Energy Research Center, Korea Institute of Energy Research)
  • 주현규 (한국에너지기술연구원 수소에너지센터) ;
  • 심은정 (한국에너지기술연구원 수소에너지센터) ;
  • 이재민 (연세대학교 화공생명공학과) ;
  • 윤재경 (한국에너지기술연구원 수소에너지센터)
  • Received : 2011.05.16
  • Accepted : 2011.08.22
  • Published : 2011.08.30

Abstract

Anodized tubular $TiO_2$ electrodes (ATTEs) with three noticeably different lengths are prepared to determine their optimum length for the photo-driven activity in the reaction of Cr(VI) reduction and hydrogen evolution. The ATTEs with ethylene glycol have longer $TiO_2$ tubes (7-15.6 ${\mu}m$) than those with hydrfluoric acid (0.6-0.8 ${\mu}m$). These samples, which differ only in the length of the tubes, with a wall thickness of ca. 20 nm, consist mainly of an anatase crystalline phase after heat treatment at $650^{\circ}C$, since the anatase crystallites at the tube walls do not undergo transformation into rutile phase, due to the constraints imposed by the wall thickness. Among them, the medium size (ca. 8 ${\mu}m$) tubes provide the optimum conditions, irrespective of the light intensity, which is explained in terms of the correlation between the amount of photons and the adsorbed electron acceptors and their location. Photocatalytic Cr(VI) reduction leads to ca. 60% reduction of Cr(VI) even under 1 sun irradiation with the medium-sized anodized $TiO_2$ tubes, but only ca. 20% with the short- and long-sized tubes. For hydrogen evolution, tubes longer than 8 ${\mu}m$ do not exhibit better performance with any light intensity.

Keywords

References

  1. A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode", Nature, Vol. 238, 1972, pp. 237-38. https://doi.org/10.1038/238237a0
  2. J. P. Best and D. E. Dunstan, "Nanotechnology for photolytic hydrogen production: Colloidal anodic oxidation", Int. J. Hydrogen Energy, Vol. 34, 2009, pp. 7562-7578. https://doi.org/10.1016/j.ijhydene.2009.07.051
  3. X. Chen, S Shen, L. Guo, S. S. Mao, "Semiconductor- based photocatalytic hydrogen generation", Chem. Rev. Vol. 110, 2010, pp. 6503-6570. https://doi.org/10.1021/cr1001645
  4. M. Ashokkumar, "An overview on semicondutor particulate systems for photoproduction of hydrogen", Int. J. Hydrogen Energy, Vol. 23, 1998, pp. 427-438. https://doi.org/10.1016/S0360-3199(97)00103-1
  5. D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, E. C. Dickey, "Titanium dioxide nanotube arrays prepared by anodic oxidation", J. Mater. Res. Vol. 16, 2001, pp. 3331-3337. https://doi.org/10.1557/JMR.2001.0457
  6. O.K. Varghese, D. Gong, M. Paulose, C. A. Grimes, E. C. Dickey, "Crystallization and hightemperature structural stability of titanium oxide nanotube arrays", J. Mater. Res. Vol. 18, 2003, pp. 156-162. https://doi.org/10.1557/JMR.2003.0022
  7. G. K. Mor, O. K. Vargheese, M. Paulose, N. Mukherjee, C. A. Grimes, "Fabrication of tapered, conical-shaped titania nanotubes", J. Mater. Res. Vol. 18, 2003, pp. 2588-2593. https://doi.org/10.1557/JMR.2003.0362
  8. G. K. Mor, K. Shankar, M. Paulose, O. K. Vargheese, C. A. Grimes, "Enhanced photocleavage of water using titania nanotube arrays", Nano Lett. Vol. 5, 2005, pp. 191-195. https://doi.org/10.1021/nl048301k
  9. M. Paulose, G. K. Mor, O. K. Vargheese, K. Shankar, C. A. Grimes, "Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays", J. Photochem. Photobiol. A: Chem. Vol. 178, 2006, pp. 8-15. https://doi.org/10.1016/j.jphotochem.2005.06.013
  10. K. S. Raja, V. K. Mahajan, M. Misra, "Determination of photo conversion efficiency of nanotubular titanium oxide photo-electrochemical cell for solar hydrogen generation", J. Power Sources Vol. 159, 2006, pp. 1258-1265. https://doi.org/10.1016/j.jpowsour.2005.12.036
  11. M. Kitano, M. Takeuchi, M. Matsuoka, J. M. Thomas, M. Anpo, "Photocatalytic water splitting using Pt-loaded visible light-responsive $TiO_{2}$ thin film photocatalysts", Catalysis Today, Vol. 120, 2007, pp. 133-138. https://doi.org/10.1016/j.cattod.2006.07.043
  12. J. Yoon, E. Shim, S. Bae, H Joo, "Application of immobilized nanotubular $TiO_{2}$ electrode for photocatalytic hydrogen evolution: Reduction of hexavalent chromium (Cr(VI)) in water", J. Hazard. Mater. Vol. 161, 2009, pp. 1069-1074. https://doi.org/10.1016/j.jhazmat.2008.04.057
  13. S. Bae, E. Shim, J. Yoon, H. Joo, "Enzymatic hydrogen production by light-sensitized anodized tubular $TiO_{2}$ photoanode", Sol. Energy Mater. Sol. Cells, Vol. 92, 2008, pp. 402-409. https://doi.org/10.1016/j.solmat.2007.09.019
  14. S. Bae, J. Kang, E. Shim, J. Yoon, H. Joo, "Correlation of electrical and physical properties of photoanode with hydrogen evolution in enzymatic photo-electrochemical cell", J. Power Sources, Vol. 179, 2008, pp. 863-869. https://doi.org/10.1016/j.jpowsour.2007.12.117
  15. S. Bae, E. Shim, J. Yoon, H. Joo, "Photoanodic and cathodic role of anodized tubular titania in light-sensitized enzymatic hydrogen production", J. Power Sources, Vol. 185, 2008, pp. 439-444. https://doi.org/10.1016/j.jpowsour.2008.06.094
  16. E. Shim, Y. Park, S. Bae, J. Yoon, H. Joo, "Phtocurrent by anodized $TiO_{2}$ photoelectrode for enzymatic hydrogen production and chromium( VI) reduction", Int. J. Hydrogen Energy, Vol. 33, 2008, pp. 5193-5198. https://doi.org/10.1016/j.ijhydene.2008.05.011
  17. 허아영 외, "금속담지된 $TiO_{2}$ 나노튜브를 활용한 Cr(VI)환원의 광화학적 효율연구", 한국수소 및 신에너지학회 논문집, Vol. 21, 2010, pp 301-306.
  18. 심은정 외, "광바이오 수소제조 시스템에서의 쏠라셀 및 나노여과 멤브레인 활용", 한국수소 및 신에너지학회 논문집, Vol. 18, 2007, pp. 151-156.
  19. 배상현 외, "광어노드 수소 제조와 광전기 특성에 관한 상관관계 연구", 한국수소 및 신에너지학회 논문집, Vol. 18, 2007, pp 244-249.
  20. S. Lawniczak, P. Lecomte, J. Ehrhardt, "Behavior of hexavalent chromium in a polluted groundwater: Redox processes and immobilization in soils", Environ. Sci. Technol., Vol. 35, 2001, pp. 1350-1357. https://doi.org/10.1021/es001073l
  21. M. A. Schlautman, I. Han, "Effects of pH and dissolved oxygen on the reduction of hexavalent chromium by dissolved ferrous iron in poorly buffered aqueous systems", Wat. Res., Vol. 35, 2001, pp. 1534-1546. https://doi.org/10.1016/S0043-1354(00)00408-5
  22. F. O. Bryant, M.W.W Adams, "Characterization of hydrogenase from the hyperthermophilic archaebacterium pyrococcus furiosus", J. Biol. Chem., Vol. 264, 1983, pp. 5070-5079.
  23. V. Osokov, B. Kebbekus, D. Chesbro, "Field determination of Cr(VI) in water at low ppb level", Anal. Lett. Vol. 29, 1996, pp. 1829-1850. https://doi.org/10.1080/00032719608001527
  24. X. Wang, S. O. Pehkonen, A. K. Ray, "Removal of aqueous Cr(VI) by a combination of photocatalytic reduction and coprecipitation", Ind. Eng. Chem. Res., Vol. 43, 2004, pp. 1665-1672. https://doi.org/10.1021/ie030580j
  25. O. K. Varghese, M. Paulose, T. J. LaTempa, C. A. Grimes, "High-rate solar photocatalytic conversion of $CO_{2}$ and water vapor to hydrocarbon fuels", Nano Lett., Vol. 9, 2009, pp. 731-737. https://doi.org/10.1021/nl803258p
  26. M. Park, A. Heo, E. Shim, J. Yoon, H. Joo, "Effect of length of anodized $TiO_{2}$ tubes on photoreactivity: Photocurrent, Cr(VI) reduction and $H_{2}$ evolution", J. Power Sources, Vol. 195, 2010, pp. 5144-5149. https://doi.org/10.1016/j.jpowsour.2010.02.065