DOI QR코드

DOI QR Code

A Review about the Importance of Protonation of Ionizable Molecules on the Predictability of CoMFA

  • Kothandan, Gugan (Centre for Bioinformatics, Department of Biochemistry, School of Life sciences, University of Madras)
  • Received : 2011.05.24
  • Accepted : 2011.06.20
  • Published : 2011.06.30

Abstract

Effect of protonation and deprotonation of ionization compounds is an important application in Comparative molecular field analysis (CoMFA). There are enough information's were reported about different CoMFA applications such as Series design and selection of training set, Geometries and optimizations of molecules, Effect of partial atomic charges, bioactive conformations and alignment, Interaction energy fields, Effects of different grid spacing etc. However limited information's are available about the ionization of compounds. This study aimed at the critical review of about the effects of protonation of ionizable molecules and its impact on the predictability of CoMFA models. We also discussed about previous implications and the things needed to be considered to come for a final conclusion about its impact on CoMFA predictability.

Keywords

References

  1. S. A Roberts, "High-throughput screening approaches for investigating drug metabolism and pharmacokinetics", Xenobiotica., Vol. 31, pp. 557-589, 2001. https://doi.org/10.1080/00498250110060978
  2. M. Dias, R. Mittal, R. McKinnon and M. Sorich, "Systematic statistical comparison of comparative molecular similarity indices analysis molecular fields for computer-aided lead optimization", J. Chem Inf. Model., Vol. 46, pp. 2015-2021, 2006. https://doi.org/10.1021/ci600214b
  3. R. D. Cramer, D. E. Patterson and J. D. Bunce, "Comparative molecular field analysis (CoMFA) I. Effect of shape on binding of steroids to carrier proteins", J. Am. Chem. Soc., Vol. 110, pp. 5959-5967, 1988. https://doi.org/10.1021/ja00226a005
  4. G. Klebe, U. Abraham and T. Mietzner, "Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological Activity", J. Med. Chem., Vol. 37, pp. 4130-4146, 1994. https://doi.org/10.1021/jm00050a010
  5. L. L. Zhu, T. J. Hou, L. R. Chen and X. J. Xu, "3D QSAR Analyses of Novel Tyrosine Kinase Inhibitors Based on Pharmacophore Alignment", J. Chem. Inf. Comput. Sci., Vol. 41, pp. 1032-1040, 2001. https://doi.org/10.1021/ci010002i
  6. G. Klebe, "Comparative Molecular Similarity Indices Analysis: CoMSIA", Perspect. Drug Discovery Des., Vol. 12, pp. 87-104, 1998.
  7. K. H. Kim, "Comparative Molecular Similarity Field Analysis (CoMFA), In dean, P. M. (Ed.) Molecular similarity in drug design", Blackie Academic & Professional, London., pp. 291-331, 1995.
  8. L. Belvisi, G. Bravi, G. Catalano, M. Mabilia, A. Salimbeni and C. Scolastico, "A 3D QSAR CoMFA study of non-peptide angiotensin II receptor antagonists", J. Comput.-Aided Mol. Des., Vol. 10, pp. 567-582, 1996. https://doi.org/10.1007/BF00134180
  9. K. H. Kim, G. Greco and E. Novellino, "A critical review of recent CoMFA applications", Perspect. Drug Discovery Des., Vol. 12, pp. 257-315, 1998.
  10. R. T. Kroemer, P. Hecht and K. R. Liedl, "Different electrostatic descriptors in comparative molecular field analysis: A comparison of molecular electrostatic and Coulomb potentials", J. Comput. Chem., Vol. 17, pp. 1296-1308, 1996. https://doi.org/10.1002/(SICI)1096-987X(199608)17:11<1296::AID-JCC2>3.0.CO;2-H
  11. A. Shagufta, G. Kumar, M. Panda, I. Siddiqi, "CoMFA and CoMSIA 3D-QSAR analysis of diaryloxy-methano-phenanthrene derivatives as antitubercular agents", J. Mol. Model., Vol. 13, pp. 99-109, 2007.
  12. Y. L. Li, A. D. Mackerell, M. J. Egorin, M. F. Ballesteros, D. M. Rosen, Y. Y. Wu, D. A. Blamble and P. S. Callery, "Comparative molecular field analysis-based predictive model of structure function relationships of polyamine transport inhibitors in L1210", Cancer. Res., Vol. 57, pp. 234-239, 1997.
  13. W. Tong, E. R. Collantes, Y. Chen and W. J. Welsh, "A comparative molecular field analysis study of N-benzylpiperidines as acetylcholinesterase inhibitors", J. Med. Chem., Vol. 39, pp. 380-387, 1996. https://doi.org/10.1021/jm950704x
  14. T. I. Opera, C. L. Waller and G. R. Marshall, "3D-QSAR of human immunodeficiency virus (I) protease inhibitors: 3. Interpretation of CoMFA results", Drug Des. Discovery., Vol. 12, pp. 29-51, 1994.
  15. C. L. Waller, T. I. Opera, A. Giolitti and G. R. Marshall, "Three-dimensional QSAR of human immunodeficiency virus-I protease inhibitors: 1. A CoMFA study employing experimentally determined alignment rules", J. Med. Chem., Vol. 36, pp. 4152-4160, 1993. https://doi.org/10.1021/jm00078a003
  16. H. Gohlke, S. Schwarz, D. Gundisch, M. C. Tilotta, A. Weber, T. Wegge, and G. Seitz, "3D QSAR Analyses-Guided Rational Design of Novel Ligands for the ($\alpha$4)2($\beta$2)3 Nicotinic Acetylcholine Receptor", J. Med. Chem., Vol. 46, pp. 2031-2048, 2003. https://doi.org/10.1021/jm020859m
  17. R. R. Mittal. R. A. McKinnon and M. J. Sorich, "Effect of steric molecular field settings on CoMFA predictivity", J. Mol. Model., Vol. 14, pp. 59-67, 2008. https://doi.org/10.1007/s00894-007-0252-1
  18. R. R. Mittal, L. Harris, R. A. McKinnon and M. J. Sorich, "Partial Charge Calculation Method Affects CoMFA QSAR Prediction Accuracy", J. Chem. Inf. Model., Vol. 49, pp. 704-709, 2009. https://doi.org/10.1021/ci800390m