Features of Plastids within Reduced Spirodela polyrhiza

축소된 개구리밥 식물체 내 색소체 특성

  • Kim, In-Sun (Biology Department, College of Natural Sciences, Keimyung University)
  • 김인선 (계명대학교 자연과학대학 생물학과)
  • Received : 2011.03.11
  • Accepted : 2011.03.24
  • Published : 2011.03.31

Abstract

Reduced plants of Spirodela polyrhiza consisting only of fronds, stalks and roots form turions during dormancy. In development, mature fronds produce offspring fronds by vegetative reproduction, and turions arise laterally from the mother frond before dormancy. The turion primordium is derived from the frond, while the frond primordium forms within the turion tissue. In the present study, cellular features, especially those of the plastids, of the above four tissue types have been examined and compared using electron microscopy. Proplastids, found to be numerous in the frond and turion primordia, differentiated into chloroplasts rapidly upon growth. The proplastids were small and the thylakoidal membrane system was rudimentary, howerver the chloroplasts exhibited variation by cell type. Chloroplasts were found within cells of the frond, stalk and root tissue. The thylakoidal membrane system, which formed grana stacks, was moderately developed within frond chloroplasts, while only a few were present in those of the stalk and root cortical cells. One to two starch grains were accumulated within frond chloroplasts, but little to none were found in stalk and root cortical chloroplasts. Contrary to other types of root chloroplasts, those found in the root cap cells developed chloroplasts similar to the frond type. Unlike proplastids of the turion primordia, numerous large amyloplasts occupied most of the turion cell volume. Moreover, the turion cell produced quite large starch grain (s) within the amyloplasts. Accumulation of the starch grains continued until they occupied the most of the stroma and in some cases, individual starch grains reached up to $9.0{\mu}m$ in length. None to little, if any, thylakoidal or internal membranous systems were seldom detected in these amyloplasts. Although the degree of cellular and tissue differentiation was rather minimal within their reduced body, the functional differentiation of Spirodela polyrhiza was very efficient, as is the case in other advanced species.

부엽성 개구리밥은 엽상체, 연결사, 뿌리로 이루어진 축소된 수생식물로 엽상체는 특정한 시기에 물속에 가라앉는 휴면구조인 잠아를 형성한다. 식물세포의 분화발달에서 중요한 기능을 수행하는 색소체는 개구리밥의 거의 모든 기관에 분포하며, 특히 잠아 형성 및 수중 침강에 있어서 이들 색소체와의 연계성이 보고되어 있다. 본 연구에서는 개구리밥 식물체 내 모든 조직을 구성하는 각각의 세포들을 대상으로 색소체 특성에 초점을 두어 전자현미경으로 연구하였다. 생장 중의 엽상체는 활발한 분열로 개체를 계속 증식시키고, 특정 시기에 잠아원기를 형성하여 엽상체-잠아원기-잠아-엽상체원기-엽상체의 분화과정을 반복한다. 개구리밥 조직에 발달하는 색소체는 전색소체, 엽록체, 전분체로 크게 대별되며, 특히 색소체의 크기, 틸라코이드막계, 녹말입자 형성 등은 엽상체와 잠아 조직 간에 뚜렷한 차이를 보인다. 엽상체 및 잠아원기 엽육세포에는 비교적 작은 전색소체가 세포질에 분산되어 다수 분포하고, 기질 내에는 틸라코이드막계 및 녹말입자가 거의 형성되지 않는다. 반면, 생장 중의 엽상체에는 엽록체들이 중앙의 큰 액포를 따라 위치하고, 기질에는 그라나를 형성하는 틸라코이드막계가 발달한다. 유사한 형태의 엽록체가 근관에 발달하나 뿌리의 피층 및 연결사 색소체에는 녹말입자는 거의 나타나지 않는다. 잠아원기와는 대조적으로 잠아조직에는 매우 큰 전분체들이 축적된다. 이들 전분체는 기질에 내부 막의 분화 없이 당 축적에 의한 거대 녹말입자를 형성하여 무거운 구조가 된다. 이와 같이 엽상체, 연결사, 뿌리조직에 형성된 엽록체로 광합성을 수행하여 생장발달에 필요한 에너지를 생성 활용하는 반면, 잠아는 에너지 생성이나 활용이 아닌 휴면상태 유지에 필요한 독특한 구조로 각각 발달한다. 축소된 개구리밥 식물체 내 색소체 및 각각의 세포와 조직들은 최소한의 구조로 분화되나 기능은 고도로 분업화된 독특한 수생식물이라 할 수 있다.

Keywords

References

  1. Appenroth KJ: No photoperiodoc control of the formation of turions in eight clones of Spirodela polyrhiza. J Plant Physiol 160 : 1329- 1334, 2003. https://doi.org/10.1078/0176-1617-01035
  2. Appenroth KJ, Bergfeld R: Photophysiology of turion germination in Spirodela polyrhiza (L.) Schieiden XI. Structural changes during red light induced responses. J Plant Physiol 141 : 583- 588, 1993. https://doi.org/10.1016/S0176-1617(11)80460-8
  3. Evert RF: Esau's Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body - Their structure, function, and development, 3rd ed., John Wiley & Sons, Hoboken, pp. 7-64, 2006.
  4. Graham LE, Graham JM, Wilcox LE: Plant Biology. 2nd ed., Pearson Prentice Hall, Upper Saddle River, pp. 134-149, 2006.
  5. Harada T, Ishizawa K: Starch degradation and sucrose metabolism during anaerobic growth of pondweed (Potamogeton distinctus A. Benn.) turions. Plant and Soil 253 : 125-135, 2003. https://doi.org/10.1023/A:1024585015697
  6. Jian Y, Li B, Wang J, Chen J: Control of turion germination in Potamogeton crispus. Aquat Bot 75 : 59-69, 2003. https://doi.org/10.1016/S0304-3770(02)00165-1
  7. Kim IS: Development of the root system in Spirodela polyrhiza (L.) Schleiden (Lemnaceae). J Plant Biol 50 : 540-547, 2007. https://doi.org/10.1007/BF03030707
  8. Kim KA, Kim IS: Structural aspect of the reduced free-floating hydrophyte, Spirodela polyrhiza. Kor J Electron Microsc 30 : 233-240, 2000.
  9. Kwak M, Kim IS: Turion as dormant structure in Spirodela polyrhiza. Kor J Electron Microsc 38 : 307-314, 2008.
  10. Landolt E: Biosystematic Investigations in the Family of Duckweeds (Lemnaceae); Vol. 2 The family of Lemnaceae, a monographic study. p. 566, 1986.
  11. Lee SM, Tanaka MS, Kang CM, Jung SY: Science of Hydrophytes. Chonnam University Publishing, Gwangju, pp. 76-85, 2005.
  12. Lee YN: Flora of Korea. Kyo-Hak Publishing Co., Ltd, Seoul, p. 1054, 1996.
  13. Mauseth JD: Botany, 4th ed., Jones and Bartlett Publishers, Sudbury, pp. 37-86, 217-243, 2009.
  14. McDonald MS: Photobiology of Higher Plants. John Wiley & Sons Ltd., Chichester, pp. 33-44, 2003.
  15. Moller SG: Plastid division in higher plants. In: Moller SG, ed, Plastids, pp. 126-158, Blackwell Publishing Ltd., Oxford, 2005.
  16. Newton RJ, Shelton DR, Duffey, JE: Turion formation and germination in Spirodela polyrhiza. Amer J Bot 65 : 421-428, 1978. https://doi.org/10.2307/2442698
  17. Reimann R, Ziegler P, Appenroth K: The binding of $alpha$-amylase to starch plays a decisive role in the initiation of storage starch degradation in turions of Spirodela ployrhiza. Physiol Plant 129 : 334-341, 2007.
  18. Sculthorpe CD: The Biology of Aquatic Vascular Plants. Edward Arnold Ltd., London, pp. 198-208, 1967.
  19. Sibaski T, Oda Y: Heterogeneity of dormancy in the turion of Spiodela polyrhiza. Plant Cell Physiol 20 : 563-571, 1979.
  20. Smart CC: Molecular analysis of turion formationin : a model system for dormant bud induction. In: Lang GA, ed, Plant Dormancy, pp. 169-281, CAB International, Wallingford, 1996.
  21. Smart CC, Trewavas AJ: Abscisic-acid-induced turion formation in Spirodela polyrhiza L II. Ultrastructure of the turion; a stereological analysis. Plant Cell Environ 6 : 515-522, 1983.
  22. Tetlow I, Rawstrhorne S, Raines C, Emes MJ: Plastid metabolic pathways. In: Moller SG, ed, Plastids, pp. 60-125, Blackwell Publishing Ltd., Oxford, 2005.
  23. Tobiessen P, Snow PD: Temperature and light effects on the growth of Potamogeton crispus in Collins Lake, New York State. Can J Bot 62: 2822-2826, 1984. https://doi.org/10.1139/b84-376
  24. Waters M, Pyke K: Plastid development and differentiation. In: Moller SG, ed, Plastids, pp. 30-59, Blackwell Publishing Ltd., Oxford, 2005.
  25. Weber JA, Nooden LD: The cause of sinking and floating in turion of Myriophyllum verticillatum. Aquat Bot 83 : 219-226, 2005. https://doi.org/10.1016/j.aquabot.2005.06.008