DOI QR코드

DOI QR Code

Thermal Emissivity of Nuclear Graphite as a Function of its Oxidation Degree (3): Structural Study using Scanning Electron Microscope and X-Ray Diffraction

  • Seo, Seung-Kuk (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Roh, Jae-Seung (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Kim, Suk-Hwan (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Chi, Se-Hwan (Korea Atomic Energy Research Institute) ;
  • Kim, Eung-Seon (Korea Atomic Energy Research Institute)
  • 투고 : 2011.01.07
  • 심사 : 2011.03.07
  • 발행 : 2011.03.30

초록

We study the relationships between the thermal emissivity of nuclear graphites (IG-110, PCEA, IG-430 and NBG-18) and their surface structural change by oxidation using scanning electron microscope and X-ray diffraction (XRD). The nonoxidized (0% weight loss) specimen had the surface covered with glassy materials and the 5% and 10% oxidized specimens, however, showed high roughness of the surface without glassy materials. During oxidation the binder materials were oxidized first and then graphitic filler particles were subsequently oxidized. The 002 interlayer spacings of the non-oxidized and the oxidized specimens were about $3.38{\sim}3.39{\AA}$. There was a slight change in crystallite size after oxidation compared to the nonoxidized specimens. It was difficult to find a relationship between the thermal emissivity and the structural parameters obtained from the XRD analysis.

키워드

참고문헌

  1. Marsden BJ. IAEA Technical Committee Meeting on Gas Turbine Power Conversion Systems for Modular HTGRs, Palo Alto, CA, 174 (2000).
  2. Mitchell BC, Smart J, Fok SL, Marsden BJ. J Nucl Mater, 322, 126 (2003). https://doi.org/10.1016/S0022-3115(03)00322-2
  3. Kurumada A, Oku T, Harada K, Kawamata K, Sato S, Hiraoka T, McEnaney B. Carbon, 35, 1157 (1997). https://doi.org/10.1016/S0008-6223(97)00088-2
  4. McNaught AD, Wilkinson A, International Union of Pure and Applied Chemistry. Compendium of Chemical Terminology: IUPAC Recommendations. 2nd ed., Blackwell Science, Malden (1997).
  5. Samoilov VM, Shilo DV. Inorg Mater, 41, 1283 (2005). https://doi.org/10.1007/s10789-005-0302-y
  6. Glasstone S, Sesonske A. Nuclear Reactor Engineering. 4th ed., Chapman & Hall, New York (1994).
  7. Especel D, Mattei S. Infrared Phys Technol, 37, 777 (1996). https://doi.org/10.1016/S1350-4495(96)00017-5
  8. Yi J, He X, Sun Y, Li Y. Appl Surf Sci, 253, 4361 (2007). https://doi.org/10.1016/j.apsusc.2006.09.063
  9. Bellayer S, Gilman JW, Rahatekar SS, Bourbigot S, Flambard X, Hanssen LM, Guo H, Kumar S. Carbon, 45, 2417 (2007). https://doi.org/10.1016/j.carbon.2007.06.057
  10. Fuller EL, Okoh JM. J Nucl Mater, 240, 241 (1997). https://doi.org/10.1016/S0022-3115(96)00462-X
  11. Zueco J, Alhama F. J Quant Spectrosc Radiat Transfer, 101, 73 (2006). https://doi.org/10.1016/j.jqsrt.2005.11.005
  12. Ball M, Pinkerton H, Harris AJL. J Volcanol Geoth Res, 173, 148 (2008). https://doi.org/10.1016/j.jvolgeores.2008.01.004
  13. Ruland W. Acta Cryst, 18, 992 (1965). https://doi.org/10.1107/S0365110X65002414
  14. Franklin RE. Acta Cryst, 4, 253 (1951). https://doi.org/10.1107/S0365110X51000842
  15. Thrower PA, ed. Chemistry and Physics of Carbon, Vol. 22, Marcel Dekker, New York, 133 (1999).
  16. Walker P, Jr., ed. Chemistry and Physics of Carbon, Vol. 1, Marcel Dekker, New York, 342 (1965).
  17. Reynolds WN. Physical Pproperties of Graphite, Elsevier Publishing, New York (1968).
  18. Seo SK, Roh JS, Kim ES, Chi SH, Kim SH, Lee SW. Carbon Lett, 10, 225 (2009). https://doi.org/10.5714/CL.2009.10.3.225
  19. Seo SK, Roh JS, Kim ES, Chi SH, Kim SH, Lee SW. Carbon Lett, 10, 300 (2009). https://doi.org/10.5714/CL.2009.10.4.300
  20. Xiaowei L, Jean-Charles R, Suyuan Y. Nucl Eng Des, 227, 273 (2004). https://doi.org/10.1016/j.nucengdes.2003.11.004
  21. Kim ES, Kim YW. Transactions of the Korean Nuclear Society Autumn Meeting, Pyeongchang, Korea (2007).
  22. Chi SH, Kim GC. J Nucl Mater, 381, 9 (2008). https://doi.org/10.1016/j.jnucmat.2008.07.027
  23. Biscoe J, Warren BE. J Appl Phys, 13, 364 (1942). https://doi.org/10.1063/1.1714879
  24. Kercher AK, Nagle DC. Carbon, 41, 15 (2003). https://doi.org/10.1016/S0008-6223(02)00261-0
  25. Nightingale RE, ed. Nuclear Graphite, Academic Press, New York, 21 (1962).
  26. Babout L, Mummery PM, Marrow TJ, Tzelepi A, Withers PJ. Carbon, 43, 765 (2005). https://doi.org/10.1016/j.carbon.2004.11.002
  27. Wen KY, Marrow TJ, Marsden BJ. Carbon, 46, 62 (2008). https://doi.org/10.1016/j.carbon.2007.10.025

피인용 문헌

  1. Investigation of the effects of graphite flake alignment on thermal emissivity by applying a magnetic field during coating of an aluminum sheet vol.40, pp.7, 2014, https://doi.org/10.1007/s11164-014-1652-3
  2. Mass removal by oxidation and sublimation of porous graphite during fiber laser irradiation vol.56, pp.1, 2016, https://doi.org/10.1117/1.OE.56.1.011013