식물플랑크톤 군집의 개체수, 생체량, chlorophyll $a$의 상관성; 인천, 통영, 울산 해역을 중심으로

Correlations between Cell Abundance, Bio-volume and Chlorophyll $a$ Concentration of Phytoplankton Communities in Coastal Waters of Incheon, Tongyeong and Ulsan of Korea

  • 투고 : 2011.10.28
  • 심사 : 2011.11.12
  • 발행 : 2011.11.30

초록

본 연구는 해양 식물플랑크톤의 개체수 및 생체량과 chlorophyll $a$ 농도간의 연관성을 파악하기 위하여 2000년부터 2010년까지 인천, 통영, 울산 해역의 34개 정점에서 1160개 시료를 분석하였다. 연구결과 개체수와 chlorophyll $a$ 농도가 생체량과 chlorophyll $a$ 농도보다 높은 상관성을 보여 우리나라 연안해역에서는 1차 생산의 분석에 있어서 개체수 지표를 사용하는 것이 생체량을 사용하는 것보다 더 효율적일 것으로 판단된다. 그러나 좀 더 자세한 결과를 도출하기 위해서는 시기별로 보다 많고, 정확한 생체량 데이터를 확보하고, 시기별 chlorophyll 함량 자료의 축적과 함께 국내 연안에서 적용 가능한 모델 구축이 반드시 필요하다.

In order to estimate a better methodological factor to understand phytoplankton ecology between abundance and bio-volume of phytoplankton, each 1,160 phytoplankton data, including abundance, classification and chlorophyll $a$ concentration were collected in Korean coastal waters of Incheon (Yellow sea), Tongyeong (South sea), and Ulsan (East sea). Based on these data, phytoplankton bio-volume can be calculated through a geometric model. The correlation coefficient between abundance and chlorophyll $a$ concentration was higher than the coefficient between biovolume and chlorophyll $a$ concentration, because a small size phytoplankton has relatively dense chlorophyll contents compared with the proportion of chlorophyll in a large size phytoplankton. Thus, the interpretation using abundance to understand phytoplankton ecology in Korean coastal waters may be more effective than that using bio-volume.

키워드

참고문헌

  1. 유광일, 김진규. 1989. 식물플랑크톤의 크기분포에 따른 군집구조 해석. 한양대학교 환경과학논문집. 19:111-119.
  2. Behrenfeld MJ, E Boss, DA Siegel and DM Shea. 2005. Carbonbased ocean productivity and phytoplankton physiology from space. Global Biogeochem. Glob. Biogeochem. Cycles 19. doi: 10.1029/2004GB002299.
  3. Berman T. 1975. Size fractionation of natural aquatic populations associated with autotrophic and heterotrophic carbon uptake. Mar. Biol. 33:215-220. https://doi.org/10.1007/BF00390925
  4. Chang FH, J Zeldis, M Gall and J Hall. 2003. Seasonal and spatial variation of phytoplankton assemblages, biomass and cell size from spring to summer across the north-eastern New Zealand continental shelf. J. Plankton Res. 25:737-758. https://doi.org/10.1093/plankt/25.7.737
  5. Fiala M, EE Kopczynska, C Jeandel, L Oriol and G Vetion. 1998. Seasonal and inter-annual variability of size-fractionated phytoplankton biomass and community structure at station Kerfix, off the Kerguelen Islands, Antarctica. J. Plankton Res. 20:1341-1356. https://doi.org/10.1093/plankt/20.7.1341
  6. Furnas MJ. 1983. Nitrogen dynamics in lower Narragansett Bay, Rhode Island. I. Uptake by size-fractionated phytoplankton populations. J. Plankton Res. 5:657-676. https://doi.org/10.1093/plankt/5.5.657
  7. Furuya K and R Marumo. 1983. The structure of the phytoplankton community in the subsurface chlorophyll maxima in the western North Pacific Ocean. J. Plankton Res. 5:393-406. https://doi.org/10.1093/plankt/5.3.393
  8. Glover HE. 1985. The physiology and ecology of the marine cyanobacterial genus Synechococcus. Adv. Aquat. Microbiol. 3:49-107.
  9. Humphrey GF and SW Jeffrey. 1997. Tests of accuracy of spectrophotometric equations for the simultaneous determination of chlorophyll a, b, c1 and c2. pp. 616-621. In Phytoplankton pigments in oceanography: guidelines to modern methods, Monographs on oceanographic methodology (Jeffrey SW, RFC Mantoura and SW Wright eds.). UNESCO publishing. Paris.
  10. Jimenez F, J Rodriguez, B Bautista and V Rodriguez. 1987. Relations between chlorophyll, phytoplankton cell abundance and biovolume during a winter bloom in Mediterranean coastal waters. J. Exp. Mar. Biol. Ecol. 105:161-173. https://doi.org/10.1016/0022-0981(87)90169-9
  11. Jin H, S Egashira and KW Chau. 1998. Carbon to chlorophylla ratio in modeling long-term eutrophication phenomena. Water Sci. Technol. 38:227-235.
  12. Jung SW, HM Joo, JS Park and JH Lee. 2009. Development of a rapid and effective method for preparing delicate dinoflagellates for scanning electron microscopy. J. Appl. Phycol. 22:313-317.
  13. Kitchen JC, D Menzies, H Pak and JRV Zaneveld. 1975. Particle size distributions in a region of coastal upwelling analyzed by characteristic vectors. Limnol. Oceanogr. 20:775-783. https://doi.org/10.4319/lo.1975.20.5.0775
  14. Li WKW, DV Subba Rao, WG Harrison, JC Smith, JJ Cullen, B Irwin and T Platt. 1983. Autotrophic picoplankton in the tropical Ocean. Science 219:292-295. https://doi.org/10.1126/science.219.4582.292
  15. Mague TH, FC Mague and O Holm-Hansen. 1977. Physiology and chemical composition of nitrogen-fixing phytoplankton in the central North Pacific Ocean. Mar. Biol. 41:213-227. https://doi.org/10.1007/BF00394908
  16. Malone TC. 1980. Algal size and phytoplankton ecology. pp. 433-463. In The physiological ecology of phytoplankton (Morris I ed.). University of California Press. Berkeley.
  17. Menden-Deuer S and EJ Lessard. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45:569-579. https://doi.org/10.4319/lo.2000.45.3.0569
  18. Mullin MM, PR Sloan and RW Eppley. 1966. Relationship between carbon content, cell volume, and area in phytoplankton. Limnol. Oceanogr. 11:307-311. https://doi.org/10.4319/lo.1966.11.2.0307
  19. Parsons TR. 1969. The use of particle size spectra in determining the structure of a plankton community. J. Oceanogr. Soc. Jap. 25:172-181.
  20. Sun J and D Liu. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res. 25:1331-1346. https://doi.org/10.1093/plankt/fbg096
  21. UNESCO. 1966. Determination of photosynthetic pigments. Report of SCOR/UNESCO working group 17. pp. 10-18. In Determinations of photosynthetic pigments in seawater. UNESCO Monographs on Oceanographic Methodology. Paris.