식물플랑크톤 군집의 개체수, 생체량, chlorophyll a의 상관성; 인천, 통영, 울산 해역을 중심으로

주 형 민·이 진 환·정 승 원^{1,*}

상명대학교 생명과학과, '한국해양연구원 해양시료도서관

Correlations between Cell Abundance, Bio-volume and Chlorophyll *a* Concentration of Phytoplankton Communities in Coastal Waters of Incheon, Tongyeong and Ulsan of Korea

Hyoung Min Joo, Jin Hwan Lee and Seung Won Jung^{1,*}

Department of Life Science, Sangmyung University, Seoul 110-743, Korea ¹Library of Marine Samples, Korea Ocean Research & Development Institute, Geoje 656-830, Korea

Abstract – In order to estimate a better methodological factor to understand phytoplankton ecology between abundance and bio-volume of phytoplankton, each 1,160 phytoplankton data, including abundance, classification and chlorophyll *a* concentration were collected in Korean coastal waters of Incheon (Yellow sea), Tongyeong (South sea), and Ulsan (East sea). Based on these data, phytoplankton bio-volume can be calculated through a geometric model. The correlation coefficient between abundance and chlorophyll *a* concentration was higher than the coefficient between bio-volume and chlorophyll *a* concentration, because a small size phytoplankton has relatively dense chlorophyll contents compared with the proportion of chlorophyll in a large size phytoplankton. Thus, the interpretation using abundance to understand phytoplankton ecology in Korean coastal waters may be more effective than that using bio-volume.

Key words : phytoplankton, cell abundance, bio-volume, chlorophyll *a*, Incheon-Tongyeong-Ulsan coastal waters

서 론

식물플랑크톤은 1차 생산자로서 해역 및 계절 등 각기 다른 환경에 의해 군집구조의 차이를 보이며 세포 크기 에 따라 다른 먹이연쇄구조를 가지고 있다(Malone 1980; Furuya and Marumo 1983). 일반적으로 연안 해역에서는 소형 이상의 크기(micro size)의 식물플랑크톤이 주로 나 타나며 (Kitchen *et al.* 1975; Malone 1980), 외해로 갈수록 미소(nano) 및 초미소(pico) 식물플랑크톤이 일차생산에 높은 기여를 하고 있다(Berman 1975; Glover 1985).

식물플랑크톤 군집 변동의 표현은 개체수(abundance), 생체량(bio-volume) 및 chlorophyll a를 사용하나, 개체수 와 chlorophyll a 농도의 변동에 따라 식물플랑크톤 군집 의 변동을 해석하는 것이 일반적이다. 개체수 측정은 식 물플랑크톤 종조성 및 생태계에 대한 종별 기여도를 설 명하기에 용이한 점이 있으나 생태계 내에서 생산력을 설명하기에 부족하며, chlorophyll a는 정량화 할 수 있

^{*} Corresponding author: Seung Won Jung, Tel. 055-636-8583, Fax. 055-636-8509, E-mail. diatoms@kordi.re.kr

는 장점을 가지고 있으나 종 별, 개체군 별 생산력을 이 해하기에 어렵다(Sun and Liu 2003). 따라서 이러한 단점 을 보완하기 위하여 Mullin et al. (1966)이 식물플랑크톤 표면적 및 부피의 생체량 개념을 도입한 것을 시작으로 Parsons (1969)과 Furnas (1983)가 식물플랑크톤 종 별 생 체량을 수학적 모델로 나타내었다. 이후 많은 연구자들 이 식물플랑크톤의 시공간적 변화를 생체량에 따라 규 명하였다 (Fiala et al. 1998; Menden-Deuer and Lessard 2000; Chang et al. 2003; Behrenfeld et al. 2005). 그러나 생태계를 이해하기 위하여 어떠한 자료를 적용해야 할지 는 현재까지 논쟁이 되고 있으며 개체수, 생체량, chlorophyll a 농도에 따른 식물플랑크톤 군집해석의 비교 연 구도 미비한 실정이다(Jin et al. 1998). 국내 연안에서의 식물플랑크톤 군집 구조 및 생태계에서의 식물플랑크톤 역할에 대한 연구는 많이 이루어졌지만 대다수가 개체 수 변동에 따른 생태계 파악이 주류를 이루고 있으며, 생체량에 따른 식물플랑크톤 군집의 시공간적인 연구는 미흡한 편이다(유와 김 1989). 따라서 식물플랑크톤 생 태계 구조를 이해하기 위해서는 개체수 또는 생체량 등 어떤 방법을 적용해야 할 것인가에 대한 기준이 정립되 어야 한다.

본 연구는 식물플랑크톤 군집을 보다 정확하게 해석 하기 위하여 국내 연안 중 서해의 인천, 남해의 통영, 동 해의 울산 해역을 대상으로 식물플랑크톤 개체수, 생체 량 및 chlorophyll a의 분석 결과를 상호 비교하여 각 해 역에 맞는 적절한 분석방법을 찾고자 하였다.

재료 및 방법

1. 조사시기 및 지역

조사해역은 인천, 통영 및 울산 해역으로(Table 1), 각

Table	1.	Sampling	g inforr	nation	of the	e investi	gated	study	area
-------	----	----------	----------	--------	--------	-----------	-------	-------	------

조사해역의 식물플랑크톤 군집을 정확하게 파악하기 위 하여 조사정점은 최소 10개 이상을 선정하여 표층과 저 층에서 시료를 채집하였다. 조사시기는 인천에서 2005년 부터 2010년까지, 통영에서 2000년부터 2007년까지, 울 산에서 2006년부터 2008년까지 각 해역에 따라 차이는 있으나 계절별 변화양상을 파악하였다. 채집시간은 광주 기와 암주기 사이에서 세포 분열 및 chlorophyll 함량의 차이를 고려하여 10:00~15:00시 사이에 수행하였다.

2. 식물플랑크톤 개체수, 생체량 및 chlorophyll a 측정

식물플랑크톤의 정량 및 정성분석을 위한 시료는 각 해역 정점 별 표층과 저층에서 Niskin 채수기로 각각 1 L를 채수하여 Lugol (최종 농도 5%) 및 glutaraldehyde 용액(최종 농도 2%)으로 고정한 후 실험실로 운반하였 다. 운반된 Lugol 고정 시료는 24시간 이상 침전시킨 후, siphon으로 농축시켰다. 농축된 시료는 Palmer-Maloney Counting Chamber를 이용하여 광학현미경 (Axioskop 40, Zeiss) 하에서 계수 및 동정하였다. 식물플랑크톤의 생체 량은 각 종 별(20개체 이상)로 광학현미경(Axioskop 40, Zeiss)과 주사전자현미경 (JSM-5600LV, Jeol) 하에서 세 포의 길이를 측정하여 Sun and Liu (2003)의 공식에 따라 평균 체적(cell bio-volume)을 계산하였다(Table 2; Fig. 1). 전자현미경 하에서 세포의 길이를 측정하기 위한 식물 플랑크톤의 전처리는 Jung et al. (2009)의 방법을 따랐다. Chlorophyll a 측정은 시수 1L를 47 mm 직경의 0.45 µm polycarbonate membrane에 여과 후, membrane을 90% acetone으로 암냉소에서 24시간 이상 보관하여 chlorophyll를 추출하였다. 추출된 chlorophyll은 분광광도계 (model 1700, Shimadzu)에서 파장 630 nm, 647 nm, 664 nm 및 750 nm의 흡광도를 측정하여 chlorophyll a의 양 으로 환산하였다 (UNESCO 1966; Humphrey and Jeffrey 1997).

Study area	No. of station	Sampling month (year)	No. of sample	Long./Lapt.
Incheon (Yellow Sea)	12	08 (2005), 02, 05, 08 (2006), 02, 04, 05, 06, 07, 09, 10 (2007), 02, 03, 05, 06, 08, 10 (2008), 09, 10, 12 (2009), 03, 04 (2010)	528	37° 14′24.38″N -37° 27′46.45″N 126° 08′03.56″E -126° 21′52.16″E
Tongyeong (South Sea)	10	04, 06, 08, 10 (2000), 08, 10, 12 (2001), 02, 07, 08, 10 (2002), 08, 10, 12 (2003), 02, 09, 11 (2004), 01, 05, 08, 11 (2005), 07, 10 (2006), 01, 04 (2007)	500	34° 30′55.65″N -34° 53′06.45″N 128° 11′33.72″E -128° 39′08.89″E
Ulsan (East Sea)	12	05, 06, 11 (2006), 02, 05, 08, 11 (2007), 02, 05, 08, 11 (2008)	132	35° 20'27.25''N -35° 39'23.11''N 129° 17'20.63''E -129° 43'55.51''E

Hyoung Min Joo, Jin Hwan Lee and Seung Won Jung

Table 2. Equations for the calculation of bio-volume by Sun and Liu (2003)	(unit: µm ³)
Cell shape	Formula
1. ellipsoid	$V = \frac{\pi}{6} \cdot a \cdot b \cdot c$
2. cylinder	$V = \frac{\pi}{4} \cdot a^2 \cdot c$
3. cylinder+2 half sphere	$V = \pi \cdot b^2 \cdot \left[\frac{a}{4} - \frac{b}{12}\right]$
4. double cone	$V = \frac{\pi}{12} \cdot a \cdot b^2$
5. cone+half sphere	$V = \frac{\pi}{4} \cdot a \cdot b^2$
6. rectangular box	$V=a \cdot b \cdot c$
7. prism on elliptic base	$V = \frac{\pi}{4} \cdot a \cdot b \cdot c$
8. elliptic prism with transapical constriction	$V \approx \frac{\pi}{4} \cdot a \cdot b \cdot c$
9. prism on parallelogram-base	$V = \frac{1}{2} \cdot a \cdot b \cdot c$
10. sickle-shaped cylinder	$V \approx \frac{\pi}{6} \cdot a \cdot b^2$
11. cymbelloid	$V = \frac{2}{3} \cdot a \cdot c^2 \cdot \operatorname{asin}\left[\frac{b}{2c}\right]$
12. ellipsoid+2 cones+cylinder	Suppose : $b_2 = b_3 = b_4$ $V = \frac{\pi}{4} \cdot a_2 \cdot b_2^2 + \frac{\pi}{12} \cdot (a_3 + a_4) \cdot b_2^2 + \frac{\pi}{6} \cdot a_1 \cdot b_1 \cdot b_2$
13. half sphere	$V = \frac{\pi}{12} \cdot a^3$
14. cylinder girdle view	$V = \frac{\pi}{4} \cdot b^2 \cdot a$
15. prism on elliptic base girdle view	$V = \frac{\pi}{4} \cdot a \cdot b \cdot c$
16. prism on triangle-base girdle view	$V = \frac{\sqrt{3}}{4} \cdot a \cdot b^2$

이와 같이 분석된 결과를 토대로 식물플랑크톤의 개 체수, 생체량, chlorophyll *a* 농도 변화의 상관성을 파악하 기 위하여 Pearson 상관계수 (Pearson correlation coefficient)를 구하였다 (SPSS, V. 12.0).

결 과

1. 식물플랑크톤 개체수의 변화

조사해역의 식물플랑크톤 개체수의 계절적 변화는 Fig. 2와 같았다. 인천 해역에서 식물플랑크톤 개체수는 2009년 봄철에 12.44±2.73×10⁵ cells L⁻¹로 가장 높았 고, 2008년 가을철에 0.31±0.13×10⁵ cells L⁻¹로 가장 낮게 출현하였으며, 평균 4.02±3.47×10⁵ cells L⁻¹이었 다. 계절별 평균 개체수는 봄철에 6.91±4.48×10⁵ cells L⁻¹, 여름철에 1.61±1.01×10⁵ cells L⁻¹ (2005년 제외), 가을철에 2.03±1.52×10⁵ cells L⁻¹, 겨울철에 2.88±0.87 ×10⁵ cells L⁻¹로 봄과 겨울철에 상대적으로 높은 개체 수를 보였고, 여름과 가을철에 개체수가 감소하였다. 그 러나 2005년 여름철 6.32±9.22×10⁵ cells L⁻¹의 높은 개 체수 출현은 일부 정점에서 Skeletonema marinoi의 106 cells L⁻¹ 이상의 대량증식에 따른 결과이다. 통영 해역의 개체수는 2004년 여름철에 9.20±2.32×10⁵ cells L⁻¹로 가장 높았고, 2002년 겨울철에 0.06±0.06×10⁵ cells L⁻¹ 로 가장 낮았으며, 평균 개체수는 2.68±2.86×10⁵ cells L-1을 나타내었다. 평균 계절별 변화는 봄철에 2.35± 2.72×10⁵ cells L⁻¹, 여름철에 3.04±2.94×10⁵ cells L⁻¹, 가 을철에 3.90±3.23×10⁵ cells L⁻¹, 겨울철에 0.24±0.14× 10⁵ cells L⁻¹으로 인천해역의 개체수 변화와 반대되는 양 상을 보였다. 특히 2000년과 2002년 가을철에는 Chaetoceros socialis의 대발생에 따라 높은 개체수를 보였다. 울산 해역의 개체수는 2006년 가을에 6.43±9.59×105

Fig. 1. Geometric shapes for the calculation of bio volume by Sun and Liu (2003).

cells L⁻¹로 가장 높았으며, 2007년 가을에 0.09±0.03× 10⁵ cells L⁻¹로 가장 낮았다. 울산 해역에서 평균 개체수 는 2.07±2.20×10⁵ cells L⁻¹로 인천 및 통영해역에 비해 가장 낮은 개체수를 보였다. 계절별 개체수 변화는 봄철 에 2.92±1.62×10⁵ cells L⁻¹, 여름철에 2.32±1.89×10⁵ cells L⁻¹, 가을철에 0.11±0.03×10⁵ cells L⁻¹ (2006년 제 외), 겨울철에 0.19±0.05×10⁵ cells L⁻¹로 봄철에 증가하 였다가 점차 감소하여 겨울철에 다시 증가하는 양상을 보였다. 2006년 가을철 가장 높은 개체수의 주된 요인은 *Skeletonema marinoi*가 평균 5.51×10⁵ cells L⁻¹로 대량 출현했기 때문이다.

2. 식물플랑크톤 생체량의 변화

식물플랑크톤 생체량은 인천 해역에서 최고 7.50± 5.47×10⁸ μm³ L⁻¹ (2008년 봄철), 최저 0.64±0.75×10⁸

μm³ L⁻¹(2007년 가을철)를 보여 약 12배의 차이를 보였 으며 (Fig. 2), 평균은 2.27±1.98×10⁸ µm³ L⁻¹이었다. 계 절별 생체량 변화는 봄철에 3.09±2.74×10⁸μm³ L⁻¹, 여 름철 1.44±0.45×10⁸μm³L⁻¹, 가을철 2.85±2.71×10⁸ μm³L⁻¹, 겨울철 1.43±0.40×10⁸μm³L⁻¹을 보여 봄과 가 을철에 높았고, 여름과 겨울철에 낮은 Bi-modal pattern 을 보였다. 통영 해역에서는 2003년 가을철에 최고 18.88 ±13.16×10⁸μm³ L⁻¹을, 2004년 겨울철에 최저 0.24± 0.20×10⁸μm³ L⁻¹로 79배의 차이를, 전체 평균 생체량은 4.69±5.23×10⁸µm³ L⁻¹로 인천 해역보다 높은 생체량 을 보였다. 계절별로는 봄철에 6.77±7.51×10⁸μm³ L⁻¹, 여름철 5.62±2.92×10⁸µm³L⁻¹, 가을철 5.04±5.47×10⁸ μm³L⁻¹, 겨울철 0.36±0.09×10⁸μm³L⁻¹로 겨울철을 제 외하면 5×10⁸μm³ L⁻¹ 이상을 보였다. 울산 해역에서는 2007년 여름철에 최고 3.35±2.21×10⁸ µm³ L⁻¹, 2008년 겨울철에 0.09±0.11×10⁸µm³ L⁻¹을, 전체 평균 생체량

Fig. 2. Seasonal variations in phytoplankton abundance, bio-volume and chlorophyll *a* concentrations in Incheon, Tongyeong and Ulsan coastal waters. Data presented mean and standard deviation.

은 1.22±0.93×10⁸ μm³ L⁻¹을 보여 인천과 통영 해역보 다 출현한 식물플랑크톤 생체량이 낮았다. 계절별 변화 는 봄철에 2.92±1.62×10⁸ μm³ L⁻¹, 여름철 2.32±1.89 ×10⁸ μm³ L⁻¹, 가을철 2.22±3.65×10⁸ μm³ L⁻¹, 겨울철 0.19±0.05×10⁸ μm³ L⁻¹로 겨울철에 가장 낮은 생체량 을 보였다. 특히 가을철 생체량이 평균값보다 높은 표준 편차 값을 나타낸 것은 2006년 6.43×10⁸ μm³ L⁻¹의 높 은 결과에 따른 것으로 Skeletonema marinoi와 Ditylum brightwellii가 전체 생체량에 84%를 기여했기 때문으로 판단된다.

3. Chlorophyll a 농도의 변화

Chlorophyll a 농도는 인천 해역에서 최고 11.59±3.31 μg L⁻¹ (2009년 봄철)을, 최저 0.96±0.23 μg L⁻¹ (2007년 가을철)을 보였고, 전체 평균 농도는 4.01±3.20 μg L⁻¹을 나타내었다(Fig. 2). 계절별로는 봄철에 7.19±3.48µg L⁻¹, 여름철 2.10±0.90 µg L⁻¹, 가을철 3.27±2.48 µg L⁻¹, 겨울 철 2.01±0.78μg L⁻¹로, 봄철과 가을철에 높고 여름과 겨 울철에 낮은 양상이었다. 통영 해역에서는 2003년 가을 철에 최고 4.59±1.19µg L⁻¹을, 2007년 겨울철에 최저 0.66±0.14μg L⁻¹을 보였으며, 전체 평균 2.10±1.17μg L-1으로 인천 해역보다 낮았다. 계절별로는 봄철에 2.21 ±1.27 μg L⁻¹, 여름철 2.03±0.84 μg L⁻¹, 가을철 2.68± 1.48μg L⁻¹, 겨울철 1.13±0.46μg L⁻¹으로 겨울철을 제외 하고 2.00μg L⁻¹ 이상의 농도를 보였다. 울산 해역에서는 최고 6.29±4.28µg L⁻¹(2006년 봄철)을, 최저 0.53±0.23 μg L⁻¹(2007년 가을철)을, 전체 평균 농도는 2.35±1.85 μg L⁻¹이었다 (Fig. 2). 계절별로는 봄철에 2.92±1.62 μg L⁻¹, 여름철 2.32±1.89µg L⁻¹, 가을철 2.22±3.65µg L⁻¹, 겨울철 0.19±0.05μg L⁻¹으로 통영 해역에서와 같이 겨 울철에 가장 낮았다.

Locality	Abundance (%)	Bio-volume(%)
Incheon	Skeletonema marioni (48.03), Thalassiosira nordenskioeldii (11.76), Paralia sulcata (5.72), Asterionellopsis glaicalis (5.71), Chaetoceros curvisetus (5.51), Leptocylindrus danicus (2.37), Lauderia annulata (2.09)	Rhizosolenia hebetata (14.61), Skeletonema marioni (9.12), Thalassiosira nordenskioeldii (8.20), Ditylum brightwellii (8.14), Coscinodiscus radiatus (6.31), Lauderia annulata (5.76), Coscinodiscus centralis (4.18), Thalassiosira eccentrica (3.41), Rhizosolenia setigera (2.20)
Tongyeong	Chaetoceros curvisetus (17.22), Chaetoceros socialis (13.19), Skeletonema marioni (8.01), Chaetoceros compressus (6.64), Chaetoceros debilis (5.30), Asterionellopsis glacialis (4.89), Leptocylindrus danicus (4.60), Chaetoceros decipiens (3.53), Pseudo-nitzschia seriata (3.04), Thalassiosira binata (2.48), Chaetoceros laciniosus (2.23)	Rhizosolenia hebetata (38.67), Gymnodinium catenatum (8.18), Rhizosolenia robusta (4.74), Ceratium fusus (2.72), Coscinodiscus asteromphalus (2.28)
Ulsan	Chaetoceros curvisetus (28.28), Skeletonema marioni (25.68), Pseudo-nitzschia seriata (5.33), Chaetoceros compressus (4.12), Leptocylindrus minimus (3.80), Thalassiosira binata (3.42), Pseudo-nitzschia delicatissima (2.29)	Rhizosolenia hebetata (38.00), Coscinodiscus centralis (11.14), Skeletonema marioni (5.46), Guinardia flaccida (5.08), Ditylum brightwellii (4.55), Chaetoceros curvisetus (3.69), Gymnodinium catenatum (2.49), Coscinodiscus radiatus (2.78)

Table 3. Comparison of dominant species between phytoplankton abundance and bio-volume

Fig. 3. Comparison of proportion between abundance and bio-volume of dominant phytoplankton species in Incheon, Tongyeong and Ulsan coastal waters.

4. 개체수 및 생체량에 따른 주요 우점종의 비교

총 조사기간 중 평균 2% 이상 식물플랑크톤의 개체수 및 생체량에 따른 주요 종은 Table 3과 같았다. 인천 해 역에서는 총 7종이 전체 개체수의 81.19%를 차지하였다. 그 중 Skeletonema marinoi가 48.03%로 가장 높았다. 그러나 생체량으로 변환 시 주요종이 다르게 나타났다. 총 9종이 전체 생체량에 61.93%를 차지하였고, 그 중 Rhizo-solenia hebetata (14.61%)와 Skeletonema marinoi

(9.12%)가 가장 높은 비율을 차지하였다. 통영 해역에서 개체수에 따른 주요좋은 Chaetoceros curvisetus (17.22%) 를 포함한 총 11종이 71.13%를 차지하였다. 생체량에 따 른 주요좋은 Rhizosolenia hebetata가 38.67%로 가장 높 은 비율을 차지하였고, 그 외 5종이 17.82%를 차지하였 다. 울산 해역에서 개체수에 따른 주요좋은 Chaetoceros curvisetus (28.28%)를 포함한 7종이 72.92%를 차지하였 고, 생체량에 따른 주요좋은 Rhizosolenia hebetata (38.00%)를 포함한 8종이 73.19%를 점유하였다.

Fig. 4. Correlation analysis between phytoplankton abundance and chlorophyll *a* concentration, bio-volume and chlorophyll *a* concentration in Incheon, Tongyeong and Ulsan coastal waters. (P value: <0.001)

본 연구 결과 비록 일부 소형 식물플랑크톤(i.e. Skeletonema marinoi, Chaetoceros curvisetus, Thalassiosira nordenskioeldii)의 경우 높은 출현 빈도 및 개체수에 의 해 생체량이 증가하여 개체수 및 생체량에 따른 주요종 으로 포함되었지만, 대부분의 주요종들은 크기에 따라 선정되었다(Fig. 3). 즉, 개체수에 따른 주요종의 크기는 10µm 내외의 nano-size의 식물플랑크톤과 20~50µm의 micro-size 식물플랑크톤이 대다수를 차지하였으나 생체 량에 따른 주요종은 100µm 이상의 meso-size (i.e. Ditylum brightwellii, Coscinodiscus asteromphalus, Coscinodiscus radiatus, Rhizosolenia hebetata, Rhizosolenia robusta) 의 식물플랑크톤으로 대부분 구성되어 있었다.

5. 식물플랑크톤 개체수, 생체량, chlorophyll a 농도간 의 상관관계

인천, 통영, 울산 해역에서 식물플랑크톤 개체수와 chlorophyll a 농도, 생체량과 chlorophyll a 농도 사이의 상관 관계는 Fig. 4와 같았다. 인천 해역에서 개체수와 chlorophyll a의 상관계수는 0.66 (P value: <0.001, n=528)이나, 생체량과 chlorophyll a는 0.52 (P value: <0.001, n=528) 로 개체수보다 낮은 상관계수를 보였다. 통영 및 울산 해역에서도 개체수가 생체량보다 높은 상관성을 보였다. 특히 통영 해역에서 개체수와 chlorophyll a의 상관계수 는 0.80 (P value: <0.001, n=500)으로 조사 해역 중 가 장 높았다.

고 찰

해양생태계에서 먹이연쇄에 따른 에너지 흐름을 파악 할 때 식물플랑크톤은 기초생산자 중의 하나로서 중요 한 위치를 차지한다. 식물플랑크톤 생산량의 측정은 개 체수, 탄소량, 생체량, chlorophyll a 농도 등을 주로 사용 하고 있다. 그러나 각각의 측정요소들은 정확한 기준이 확립되어 있지 않고 각기 다른 의미를 부여하고 있다 (Menden-Deuer and Lessard 2000). 서론에서도 언급하였 듯이 chlorophyll 농도는 쉽고 정량적인 분석이 가능하여 식물플랑크톤의 생산력의 지표로 많이 사용하고 있다. 따라서 chlorophyll과 개체수, chlorophyll과 생체량을 비 교한다면 어떤 지표가 생태학적 해석에서 더 좋은지 비 교할 수 있을 것이다. 본 연구 결과 세 지표간의 상관관 계는 지역별 차이를 보였으나, 개체수와 chlorophyll a 농 도의 상관관계가 인천, 통영, 울산해역에서 모두 높게 나 타났다(Fig. 4). 이와 같은 결과는 식물플랑크톤의 크기에 따른 차이라고 판단된다. 개체수에 따른 주요 우점종은

크기 별로 구분을 하였을 때 Skeletonema marinoi, Thalassiosira nordenskioeldii, Chaetoceros curvisetus 등으로 nano-(대략 10µm) 및 micro-size (대략 20~40µm)의 식 물플랑크톤이 우점을 하였다. 반면, 생체량을 기준으로 하 였을 때 Rhizosolenia 등 100 µm 이상의 식물플랑크톤이 주요종으로 나타났다. 즉, 같은 크기일지라도 세포 내 chlorophyll a 함량의 차이에 따른 결과로 판단된다. Mague et al. (1977)과 Jiménez et al. (1987)은 크기가 작은 식물플랑크톤 중 규조류에서 상대적으로 높은 chlorophyll을 갖는다고 보고하였다. 또한 Li et al. (1983)은 picosize인 cyanobacteria에서 매우 높은 chlorophyll 함량(0.5 fg Chl-a cell⁻¹)을 측정하였다. 이는 비록 크기가 큰 식물 플랑크톤이 더 많은 chlorophyll을 가지고 있는 것이 일 반적이나 개체 대비 크기가 큰 식물플랑크톤이 크기가 작은 식물플랑크톤에 비해 낮은 비율의 chlorophyll 함량 을 가지고 있음을 시사한다. 본 연구 결과 통영해역에서 생체량과 chlorophyll a의 상관계수는 0.41로 다른 해역 에 비해 가장 낮게 나타났으며 (Fig. 4), 이는 Rhizosolenia hebetata가 개체수에서는 낮았으나 R. hebetata 한 개체당 생체량은 약 300,000 µm³으로 전체 생체량 대비 50%의 비율을 차지하였기 때문으로 해석된다. 개체수와 chlorophyll a의 상관관계에서 통영해역이 다른 해역보다 0.80 으로 가장 높게 나타났는데 이는 인천, 울산 해역에서의 출현종들보다 소형 종들이 더 높게 출현하였기 때문이 었다(Fig. 3). 따라서 연안해역에서 크기가 작은 식물플 랑크톤이 높게 출현하였을 때 개체수는 chlorophyll a와 상관성이 높게 나타나게 된다. 식물플랑크톤 생체량에 관한 많은 연구들은 탄소량과 생체량, 탄소량과 chlorophyll a의 관계에 초점이 맞추어져 있다(Jin et al. 1998; Menden-Deuer and Lessard 2000; Behrenfeld et al. 2005). 이러한 연구들은 크기가 다양한 식물플랑크톤 군집의 특성상 단순히 개체수를 측정하는 것 보다는 부피의 개 념이 식물플랑크톤의 일차생산을 지시할 수 있다고 판 단하였기 때문이다(Sun and Liu 2003). 그러나 본 연구에 서는 생체량보다는 개체수와 chlorophyll a의 상관성이 더 높은 것으로 볼 때 각 해역의 특성을 고려한 지표선 정이 필요할 것으로 판단된다.

각 지표 간의 상관성을 분석하기 위해서는 정확한 자 료가 요구되며, 생체량을 파악하기 위해서는 높이, 폭, 길 이 등 입체적으로 그 크기를 계산하여야 한다. 현재 광 학현미경에 의한 척도를 계산하는 것은 거의 불가능하 여 전자현미경 등 정밀하게 체적을 분석할 수 있는 기 기를 이용하여 결과를 산출하여야 한다. 또한 식물플랑 크톤 개체수의 정확한 계수를 하기 위하여 광학현미경 하에서 Sedgwick-Rafter chamber의 사용을 지양하고 형 광 염색 등 측정방법을 다양화 해야 한다. 상대적으로 큰 세포일수록 더 많은 엽록체를 갖고 있을 수 있으나 생체 량이 크다고 엽록체의 양이 반드시 많다고는 말할 수 없 다. 또한 같은 크기의 세포일지라도 계절에 따라, 분포하 는 수심에 따라 광합성율은 차이를 나타낼 수 있다. 이와 같은 결론을 도출하기 위해 선행되어야 할 것은 광합성 에 따른 chlorophyll a의 함량이다. 일반적으로 chlorophyll 함량은 세포 밀도, 광량, 수온, 영양염 등 서식환경에 따 라 다른 양상을 나타내며 특히 광량에 따라 변화한다 (Jin et al. 1998). 본 연구에서는 비록 조사시기 및 기후 에 따른 chlorophyll 함량을 측정하지는 못하였으나 각 조사해역 별로 각 시기 별 동일하게 개체수, chlorophyll a 농도, 생체량을 측정하여 함량 차이에 따른 오차를 최 소화하였다.

적 요

본 연구는 해양 식물플랑크톤의 개체수 및 생체량과 chlorophyll a 농도간의 연관성을 파악하기 위하여 2000년 부터 2010년까지 인천, 통영, 울산 해역의 34개 정점에서 1160개 시료를 분석하였다. 연구결과 개체수와 chlorophyll a 농도가 생체량과 chlorophyll a 농도보다 높은 상 관성을 보여 우리나라 연안해역에서는 1차 생산의 분석 에 있어서 개체수 지표를 사용하는 것이 생체량을 사용 하는 것보다 더 효율적일 것으로 판단된다. 그러나 좀 더 자세한 결과를 도출하기 위해서는 시기별로 보다 많 고, 정확한 생체량 데이터를 확보하고, 시기별 chlorophyll 함량 자료의 축적과 함께 국내 연안에서 적용 가능한 모델 구축이 반드시 필요하다.

사 사

본 연구는 2011년도 한국해양연구원 기본 연구사업 '현장 유사 폐쇄 생태계를 이용한 생태계 위해성 평가 체계 구축 연구(PE98724)'로 수행되었습니다.

참고 문 헌

- 유광일, 김진규. 1989. 식물플랑크톤의 크기분포에 따른 군 집구조 해석. 한양대학교 환경과학논문집. 19:111-119.
- Behrenfeld MJ, E Boss, DA Siegel and DM Shea. 2005. Carbonbased ocean productivity and phytoplankton physiology from space. Global Biogeochem. Glob. Biogeochem. Cycles

19. doi: 10.1029/2004GB002299.

- Berman T. 1975. Size fractionation of natural aquatic populations associated with autotrophic and heterotrophic carbon uptake. Mar. Biol. 33:215-220.
- Chang FH, J Zeldis, M Gall and J Hall. 2003. Seasonal and spatial variation of phytoplankton assemblages, biomass and cell size from spring to summer across the north-eastern New Zealand continental shelf. J. Plankton Res. 25:737-758.
- Fiala M, EE Kopczynska, C Jeandel, L Oriol and G Vetion. 1998. Seasonal and inter-annual variability of size-fractionated phytoplankton biomass and community structure at station Kerfix, off the Kerguelen Islands, Antarctica. J. Plankton Res. 20:1341-1356.
- Furnas MJ. 1983. Nitrogen dynamics in lower Narragansett Bay, Rhode Island. I. Uptake by size-fractionated phytoplankton populations. J. Plankton Res. 5:657-676.
- Furuya K and R Marumo. 1983. The structure of the phytoplankton community in the subsurface chlorophyll maxima in the western North Pacific Ocean. J. Plankton Res. 5:393-406.
- Glover HE. 1985. The physiology and ecology of the marine cyanobacterial genus *Synechococcus*. Adv. Aquat. Microbiol. 3:49-107.
- Humphrey GF and SW Jeffrey. 1997. Tests of accuracy of spectrophotometric equations for the simultaneous determination of chlorophyll *a*, *b*, *c*1 and *c*2. pp. 616-621. In Phytoplankton pigments in oceanography: guidelines to modern methods, Monographs on oceanographic methodology (Jeffrey SW, RFC Mantoura and SW Wright eds.). UNESCO publishing. Paris.
- Jiménez F, J Rodríguez, B Bautista and V Rodríguez. 1987. Relations between chlorophyll, phytoplankton cell abundance and biovolume during a winter bloom in Mediterranean coastal waters. J. Exp. Mar. Biol. Ecol. 105:161-173.
- Jin H, S Egashira and KW Chau. 1998. Carbon to chlorophylla ratio in modeling long-term eutrophication phenomena. Water Sci. Technol. 38:227-235.

- Jung SW, HM Joo, JS Park and JH Lee. 2009. Development of a rapid and effective method for preparing delicate dinoflagellates for scanning electron microscopy. J. Appl. Phycol. 22:313-317.
- Kitchen JC, D Menzies, H Pak and JRV Zaneveld. 1975. Particle size distributions in a region of coastal upwelling analyzed by characteristic vectors. Limnol. Oceanogr. 20:775-783.
- Li WKW, DV Subba Rao, WG Harrison, JC Smith, JJ Cullen, B Irwin and T Platt. 1983. Autotrophic picoplankton in the tropical Ocean. Science 219:292-295.
- Mague TH, FC Mague and O Holm-Hansen. 1977. Physiology and chemical composition of nitrogen-fixing phytoplankton in the central North Pacific Ocean. Mar. Biol. 41:213-227.
- Malone TC. 1980. Algal size and phytoplankton ecology. pp. 433-463. In The physiological ecology of phytoplankton (Morris I ed.). University of California Press. Berkeley.
- Menden-Deuer S and EJ Lessard. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45:569-579.
- Mullin MM, PR Sloan and RW Eppley. 1966. Relationship between carbon content, cell volume, and area in phytoplankton. Limnol. Oceanogr. 11:307-311.
- Parsons TR. 1969. The use of particle size spectra in determining the structure of a plankton community. J. Oceanogr. Soc. Jap. 25:172-181.
- Sun J and D Liu. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res. 25:1331-1346.
- UNESCO. 1966. Determination of photosynthetic pigments. Report of SCOR/UNESCO working group 17. pp. 10-18. In Determinations of photosynthetic pigments in seawater. UNESCO Monographs on Oceanographic Methodology. Paris.

Manuscript Received: October 28, 2011 Revision Accepted: November 12, 2011 Responsible Editor: Hak Young Lee