Correlations between Cell Abundance, Bio-volume and Chlorophyll $a$ Concentration of Phytoplankton Communities in Coastal Waters of Incheon, Tongyeong and Ulsan of Korea

식물플랑크톤 군집의 개체수, 생체량, chlorophyll $a$의 상관성; 인천, 통영, 울산 해역을 중심으로

  • Received : 2011.10.28
  • Accepted : 2011.11.12
  • Published : 2011.11.30

Abstract

In order to estimate a better methodological factor to understand phytoplankton ecology between abundance and bio-volume of phytoplankton, each 1,160 phytoplankton data, including abundance, classification and chlorophyll $a$ concentration were collected in Korean coastal waters of Incheon (Yellow sea), Tongyeong (South sea), and Ulsan (East sea). Based on these data, phytoplankton bio-volume can be calculated through a geometric model. The correlation coefficient between abundance and chlorophyll $a$ concentration was higher than the coefficient between biovolume and chlorophyll $a$ concentration, because a small size phytoplankton has relatively dense chlorophyll contents compared with the proportion of chlorophyll in a large size phytoplankton. Thus, the interpretation using abundance to understand phytoplankton ecology in Korean coastal waters may be more effective than that using bio-volume.

본 연구는 해양 식물플랑크톤의 개체수 및 생체량과 chlorophyll $a$ 농도간의 연관성을 파악하기 위하여 2000년부터 2010년까지 인천, 통영, 울산 해역의 34개 정점에서 1160개 시료를 분석하였다. 연구결과 개체수와 chlorophyll $a$ 농도가 생체량과 chlorophyll $a$ 농도보다 높은 상관성을 보여 우리나라 연안해역에서는 1차 생산의 분석에 있어서 개체수 지표를 사용하는 것이 생체량을 사용하는 것보다 더 효율적일 것으로 판단된다. 그러나 좀 더 자세한 결과를 도출하기 위해서는 시기별로 보다 많고, 정확한 생체량 데이터를 확보하고, 시기별 chlorophyll 함량 자료의 축적과 함께 국내 연안에서 적용 가능한 모델 구축이 반드시 필요하다.

Keywords

References

  1. 유광일, 김진규. 1989. 식물플랑크톤의 크기분포에 따른 군집구조 해석. 한양대학교 환경과학논문집. 19:111-119.
  2. Behrenfeld MJ, E Boss, DA Siegel and DM Shea. 2005. Carbonbased ocean productivity and phytoplankton physiology from space. Global Biogeochem. Glob. Biogeochem. Cycles 19. doi: 10.1029/2004GB002299.
  3. Berman T. 1975. Size fractionation of natural aquatic populations associated with autotrophic and heterotrophic carbon uptake. Mar. Biol. 33:215-220. https://doi.org/10.1007/BF00390925
  4. Chang FH, J Zeldis, M Gall and J Hall. 2003. Seasonal and spatial variation of phytoplankton assemblages, biomass and cell size from spring to summer across the north-eastern New Zealand continental shelf. J. Plankton Res. 25:737-758. https://doi.org/10.1093/plankt/25.7.737
  5. Fiala M, EE Kopczynska, C Jeandel, L Oriol and G Vetion. 1998. Seasonal and inter-annual variability of size-fractionated phytoplankton biomass and community structure at station Kerfix, off the Kerguelen Islands, Antarctica. J. Plankton Res. 20:1341-1356. https://doi.org/10.1093/plankt/20.7.1341
  6. Furnas MJ. 1983. Nitrogen dynamics in lower Narragansett Bay, Rhode Island. I. Uptake by size-fractionated phytoplankton populations. J. Plankton Res. 5:657-676. https://doi.org/10.1093/plankt/5.5.657
  7. Furuya K and R Marumo. 1983. The structure of the phytoplankton community in the subsurface chlorophyll maxima in the western North Pacific Ocean. J. Plankton Res. 5:393-406. https://doi.org/10.1093/plankt/5.3.393
  8. Glover HE. 1985. The physiology and ecology of the marine cyanobacterial genus Synechococcus. Adv. Aquat. Microbiol. 3:49-107.
  9. Humphrey GF and SW Jeffrey. 1997. Tests of accuracy of spectrophotometric equations for the simultaneous determination of chlorophyll a, b, c1 and c2. pp. 616-621. In Phytoplankton pigments in oceanography: guidelines to modern methods, Monographs on oceanographic methodology (Jeffrey SW, RFC Mantoura and SW Wright eds.). UNESCO publishing. Paris.
  10. Jimenez F, J Rodriguez, B Bautista and V Rodriguez. 1987. Relations between chlorophyll, phytoplankton cell abundance and biovolume during a winter bloom in Mediterranean coastal waters. J. Exp. Mar. Biol. Ecol. 105:161-173. https://doi.org/10.1016/0022-0981(87)90169-9
  11. Jin H, S Egashira and KW Chau. 1998. Carbon to chlorophylla ratio in modeling long-term eutrophication phenomena. Water Sci. Technol. 38:227-235.
  12. Jung SW, HM Joo, JS Park and JH Lee. 2009. Development of a rapid and effective method for preparing delicate dinoflagellates for scanning electron microscopy. J. Appl. Phycol. 22:313-317.
  13. Kitchen JC, D Menzies, H Pak and JRV Zaneveld. 1975. Particle size distributions in a region of coastal upwelling analyzed by characteristic vectors. Limnol. Oceanogr. 20:775-783. https://doi.org/10.4319/lo.1975.20.5.0775
  14. Li WKW, DV Subba Rao, WG Harrison, JC Smith, JJ Cullen, B Irwin and T Platt. 1983. Autotrophic picoplankton in the tropical Ocean. Science 219:292-295. https://doi.org/10.1126/science.219.4582.292
  15. Mague TH, FC Mague and O Holm-Hansen. 1977. Physiology and chemical composition of nitrogen-fixing phytoplankton in the central North Pacific Ocean. Mar. Biol. 41:213-227. https://doi.org/10.1007/BF00394908
  16. Malone TC. 1980. Algal size and phytoplankton ecology. pp. 433-463. In The physiological ecology of phytoplankton (Morris I ed.). University of California Press. Berkeley.
  17. Menden-Deuer S and EJ Lessard. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45:569-579. https://doi.org/10.4319/lo.2000.45.3.0569
  18. Mullin MM, PR Sloan and RW Eppley. 1966. Relationship between carbon content, cell volume, and area in phytoplankton. Limnol. Oceanogr. 11:307-311. https://doi.org/10.4319/lo.1966.11.2.0307
  19. Parsons TR. 1969. The use of particle size spectra in determining the structure of a plankton community. J. Oceanogr. Soc. Jap. 25:172-181.
  20. Sun J and D Liu. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res. 25:1331-1346. https://doi.org/10.1093/plankt/fbg096
  21. UNESCO. 1966. Determination of photosynthetic pigments. Report of SCOR/UNESCO working group 17. pp. 10-18. In Determinations of photosynthetic pigments in seawater. UNESCO Monographs on Oceanographic Methodology. Paris.