Theoretical Framework for Application and Development of Two-dimensional Numerical Landscape Evolution Models on a Geological Time Scale

2차원 지질시간 규모 수치지형발달모형의 활용과 개발을 위한 이론적 토대

  • Byun, Jong-Min (Research Institute for Social Science Education, Seoul National University)
  • 변종민 (서울대학교 사회교육연구소)
  • Received : 2011.05.22
  • Accepted : 2011.06.28
  • Published : 2011.06.30

Abstract

Advances in computer technology enabled us to simulate the integrated effects of various geomorphic processes on landscape evolution. This review introduces a theoretical framework for 2-dimensional numerical landscape evolution models (NLEMs) which have recently been used for various research purposes. In particular much attention is paid to the approaches deployed to model major geomorphic processes on a geological time scale in previous research. NLEMs can simulate landscape evolution by numerically solving the partial differential equation which represents the relationship among the geomorphic system components (GSCs). Simple process specifications of the relationships among GSCs on a long-term time scale in terms of quantification and attempts to combine processes represent the initial research on NLEMs. Later researchers have taken these simple NLEMs and elaborated on them. Introducing the theories of NLEMs in this review is expected to help researchers trying to utilize or develop NLEMs.

컴퓨터 기술이 발달하면서, 지질시간 규모에서 다양한 지형형성작용들의 복합적인 영향으로 인한 지형발달을 모의하는 것이 가능하게 되었다. 본 연구는 최근 들어 활용도가 점차 높아지고 있는 2차원 지질시간 규모 수치지형발달모형을 소개하며, 특히 지질 시간 규모에서 주요한 지형형성작용들을 모형화하기 위한 접근 방법들을 중점적으로 다루었다. 수치지형발달모형은 지형체계를 구성하는 체계요소와 이들 간의 관계를 미분방정식으로 표현한 후 이의 해를 수치적으로 구함으로써 지형발달을 모의한다. 수치지형발달모형 연구는 장기간에 걸친 지형체계요소들간의 관계를 정량적 관점에서 최대한 단순하게 모형화하고 이를 결합하는 것에서부터 시작되었고, 후대 연구자들에 의해 보다 정교해지고 있다. 본 연구에서 소개한 이론들은 수치지형발달모형을 한반도에 적용하거나 개발하려는 연구자들에게 도움이 될 것으로 기대된다.

Keywords

References

  1. Ahnert, F., 1970, Functional relationships between denudation, relief, and uplift in large, midlatitude drainage basins, American Journal of Science, 268(3), 243-263. https://doi.org/10.2475/ajs.268.3.243
  2. Ahnert, F., 1976, Brief description of a comprehensive three-dimensional process-response model of landform development, Zeitschrift fur Geomorphologie Supplementband, 25, 29-49.
  3. Ahnert, F., 1977, Some comments on the quantitative formulation of geomorphological processes in a theoretical model, Earth Surface Processes, 2, 191-201. https://doi.org/10.1002/esp.3290020211
  4. Anderson, R. S. and Humphrey, N. F., 1989, Interaction of weathering and transport processes in the evolution of arid landscapes, in Quantitative Dynamic Stratigraphy, Cross, T. A. (ed), pp. 349-361, Prentice Hall.
  5. Anderson, R. S., 2002, Modeling the tor-dotted crests, bedrock edges, and parabolic profiles of high alpine surfaces of the Wind River Range, Wyoming, Geomorphology, 46(1-2), 35-58. https://doi.org/10.1016/S0169-555X(02)00053-3
  6. Andrews, D. J. and Bucknam, R. C., 1987, Fitting Degradation of Shoreline Scarps by a Nonlinear Diffusion Model, Journal of Geophysical Research, 92(B12), 12857-12867. https://doi.org/10.1029/JB092iB12p12857
  7. Beaumont, C., Fullsack, P., and Hamilton, J., 1992, Erosional control of active compressional orogens, in Thrust Tectonics, McClay, K. R. (ed), pp. 1-18, Chapman & Hall.
  8. Beaumont, C., Kooi, H., and Willett, S., 2000, Coupled tectonic-surface process models with applications to rifted margins and collisional orogens, in Geomorphology and Global Tectonics, Summerfield, M. A. (ed), pp. 29-55, Wiley.
  9. Bogaart, P. W., Tucker, G. E., and de Vries, J. J., 2003, Channel network morphology and sediment dynamics under alternating periglacial and temperate regimes: A numerical simulation study, Geomorphology, 54(3-4), 257-277. https://doi.org/10.1016/S0169-555X(02)00360-4
  10. Braun, J. and Sambridge, M., 1997, Modelling landscape evolution on geological time scales: A new method based on irregular spatial discretization, Basin Research, 9(1), 27-52. https://doi.org/10.1046/j.1365-2117.1997.00030.x
  11. Braun, J., Heimsath, A. M., and Chappell, J., 2001, Sediment transport mechanisms on soil-mantled hillslopes, Geology, 29(8), 683-686. https://doi.org/10.1130/0091-7613(2001)029<0683:STMOSM>2.0.CO;2
  12. Burbank, D. W. and Anderson, R. S., 2001, Tectonic geomorphology, Blackwell Science.
  13. Byun, J., 2011, Development and application of a numerical landscape evolution model to understand the uplift history of the Korean Peninsula, Ph.D. Dissertation, Seoul National University (in Korean).
  14. Carson, M. A. and Kirkby, M. J., 1972, Hillslope form and process, Cambridge University Press.
  15. Champel, B., van der Beek, P., Mugnier, J.-L., and Leturmy, P., 2002, Growth and lateral propagation of fault-related folds in the Siwaliks of western Nepal: Rates, mechanisms, and geomorphic signature, Journal of Geophysical Research, 107(B6), 2111.
  16. Codilean, A. T., Bishop, P., and Hoey, T. B., 2006, Surface process models and the links between tectonics and topography, Progress in Physical Geography, 30(3), pp. 307-333. https://doi.org/10.1191/0309133306pp480ra
  17. Coulthard, T. J. and Macklin, M. G., 2001, How sensitive are river systems to climate and land-use changes? A model based evaluation, Journal of Quaternary Science, 16(4), 347-351. https://doi.org/10.1002/jqs.604
  18. Culling, W. E. H., 1963, Soil creep and the development of hillside slopes, Journal of Geology, 71, 127-161. https://doi.org/10.1086/626891
  19. Davis, W. M., 1899, The Geographical Cycle, The Geographical Journal, 14(5), 481-504. https://doi.org/10.2307/1774538
  20. Densmore, A. L., Ellis, M. A., and Anderson, R. S., 1998, Landsliding and the evolution of normal-faultbounded mountains, Journal of Geophysical Research B: Solid Earth, 103(7), 15203-15219. https://doi.org/10.1029/98JB00510
  21. Fernandes, N. F. and Dietrich, W. E., 1997, Hillslope evolution by diffusive processes: The timescale for equilibrium adjustments, Water Resources Research, 33(6), 1307-1318. https://doi.org/10.1029/97WR00534
  22. Gilbert, G., 1877, Report on the Geology of the Henry Mountains, Washington.
  23. Gilbert, G., 1909, The convexity of hilltops, The Journal of Geology, 17(4), 344-350. https://doi.org/10.1086/621620
  24. Hack, J. T., 1960, Interpretation of erosional topography in humid temperate regions, American Journal of Science, 258(4), 80-97.
  25. Hancock, G. R., Evans, K. G., Willgoose, G. R., Moliere, D. R., Saynor, M. J., and Loch, R. J., 2000, Medium-term erosion simulation of an abandoned mine site using the SIBERIA landscape evolution model, Australian Journal of Soil Research, 38(2), 249-264. https://doi.org/10.1071/SR99035
  26. Heimsath, A. M., Fink, D., and Hancock, G. R., 2009, The 'humped' soil production function: Eroding Arnhem land, Australia, Earth Surface Processes and Landforms, 34(12), 1674-1684. https://doi.org/10.1002/esp.1859
  27. Heimsath, A. M., Furbish, D. J., and Dietrich, W. E., 2005, The illusion of diffusion: Field evidence for depth-dependent sediment transport, Geology, 33(12), 949-952. https://doi.org/10.1130/G21868.1
  28. Howard, A. D. and Kerby, G., 1983, Channel changes in badlands, Geological Society of America Bulletin, 94(6), 739-752. https://doi.org/10.1130/0016-7606(1983)94<739:CCIB>2.0.CO;2
  29. Howard, A. D., 1994, A detachment-limited model of drainage basin evolution, Water Resources Research, 30(7), 2261-2285. https://doi.org/10.1029/94WR00757
  30. Howard, A. D., Dietrich, W. E., and Seidl, M. A., 1994, Modeling fluvial erosion on regional to continental scales, Journal of Geophysical Research, 99(B7), 13971-13986. https://doi.org/10.1029/94JB00744
  31. Kim, J. W., 1989, Introduction to the method of the functional geomorphology, Journal of Geography Education, 22, 15-27 (in Korean).
  32. Kim, J. W., 1993, The role and the function of the time in geomorphology, Journal of Geography Education, 30, 1-15 (in Korean).
  33. Kim, J. Y., 2004, Controls over bedrock channel incision, Ph.D. Disseration, Glasgow University.
  34. King, L. C., 1953, Canons of landscape evolution, Geological Society of America Bulletin, 64(7), 721-752. https://doi.org/10.1130/0016-7606(1953)64[721:COLE]2.0.CO;2
  35. Kirkby, M. J., 1971, Hillslope process-response models based on the continuity equation, in Slopes, form and process, Brunsden, D. (ed), pp. 15-30, London. Instititute of British Geographers.
  36. Knighton, D., 1998, Fluvial forms and processes: A new perspective, Arnold.
  37. Kooi, H. and Beaumont, C., 1994, Escarpment evolution on high-elevation rifted margins: insights derived from a surface processes model that combines diffusion, advection, and reaction, Journal of Geophysical Research, 99(B6), 12191-12209. https://doi.org/10.1029/94JB00047
  38. Koons, P. O., 1989, The topographic evolution of collisional mountain belts: a numerical look at the Southern Alps, New Zealand, American Journal of Science, 289(9), 1041-1069. https://doi.org/10.2475/ajs.289.9.1041
  39. Koons, P. O., 1995, Modeling the topographic evolution of collisional belts, Annual Review of Earth & Planetary Sciences, 23, 375-408. https://doi.org/10.1146/annurev.ea.23.050195.002111
  40. Luo, W., Stravers, J. A., and Duffin, K. L., 2005, Lessons learned from using a Web-based Interactive Landform Simulation Model (WILSIM) in a general education physical geography course, Journal of Geoscience Education, 53(5), 489-493. https://doi.org/10.5408/1089-9995-53.5.489
  41. Martin, Y. and Church, M., 1997, Diffusion in landscape development models: On the nature of basic transport relations, Earth Surface Processes and Landforms, 22(3), 273-279. https://doi.org/10.1002/(SICI)1096-9837(199703)22:3<273::AID-ESP755>3.0.CO;2-D
  42. Martin, Y., 2000, Modelling hillslope evolution: linear and nonlinear transport relations, Geomorphology, 34, 1-21. https://doi.org/10.1016/S0169-555X(99)00127-0
  43. Minasny, B. and McBratney, A. B., 2001, A rudimentary mechanistic model for soil formation and landscape development: II. A two-dimensional model incorporating chemical weathering, Geoderma, 103(1-2), 161-179. https://doi.org/10.1016/S0016-7061(01)00075-1
  44. Pazzaglia, F. J., 2003, Landscape evolution models, in The Quaternary Period in the United States, Gillespie, A. R., Porter, S. C. and Atwater, B. F. (eds), pp. 247-274, Elsevier, Amsterdam.
  45. Pelletier, J. D. and Rasmussen, C., 2009, Geomorphically based predictive mapping of soil thickness in upland watersheds, Water Resources Research, 45, W09417, doi:10.1029/2008WR007319.
  46. Penck, W., 1924, Die Morphologische Analyse: Ein Kapital der Physikalischen Geolgie, Von J. Engelhorns Nachf. Verlab, Stuttgart. (Translated by Czech, H. and Boswell, K. C., 1953, Morphological analysis of land forms: A contribution to physical Geology, MacMillan, London.)
  47. Roering, J. J., 2004, Soil creep and convex-upward velocity profiles: Theoretical and experimental investigation of disturbance-driven sediment transport on hillslopes, Earth Surface Processes and Landforms, 29(13), 1597-1612. https://doi.org/10.1002/esp.1112
  48. Roering, J. J., 2008, How well can hillslope evolution models "explain" topography? Simulating soil transport and production with high-resolution topographic data, Bulletin of the Geological Society of America, 120(9-10), 1248-1262. https://doi.org/10.1130/B26283.1
  49. Roering, J. J., Kirchner, J. W., and Dietrich, W. E., 1999, Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology, Water Resources Research, 35(3), 853-870. https://doi.org/10.1029/1998WR900090
  50. Roering, J. J., Kirchner, J. W., Sklar, L. S., and Dietrich, W. E., 2001, Hillslope evolution by nonlinear creep and landsliding: An experimental study, Geology, 29(2), 143-146. https://doi.org/10.1130/0091-7613(2001)029<0143:HEBNCA>2.0.CO;2
  51. Schumm and Lichty, 1965, Time, space, and causality in geomorphology, American Journal of Science, 263, 110-119. https://doi.org/10.2475/ajs.263.2.110
  52. Seidl, M. A. and Dietrich, W. E., 1992, The problem of channel erosion into bedrock, in Functional Geomorphology, Schmidt, K. H. and Ploey, J. (eds), Catena Supplement, 23, 101-124.
  53. Seidl, M. A., Dietrich, W. E., and Kirchner, J. W., 1994, Longitudinal profile development into bedrock: an analysis of Hawaiian channels, Journal of Geology, 102(4), 457-474. https://doi.org/10.1086/629686
  54. Stock, J. and Montgomery, D. R., 1999, Geologic constrains on bedrock river incision using the stream power law, Journal of Geophysical Research, 104, 4983-4993. https://doi.org/10.1029/98JB02139
  55. Strahler, A. H. and Strahler, A. N., 1992, Modern physical geography (4th ed), Wiley.
  56. Strudley, M. W., Muray, A. B., and Haff, P. K., 2006, Regolith thickness instability and the formation of tors in arid environments, Journal of Geophysical Research F: Earth Surface, 111(3), F03010, doi:10.1029/2005JF000405.
  57. Tucker, G. E. and Hancock, G. R., 2010, Modelling landscape evolution, Earth Surface Processes and Landforms, 35(1), 28-50. https://doi.org/10.1002/esp.1952
  58. Tucker, G. E. and Slingerland, R. L., 1994, Erosional dynamics, flexural isostasy, and long-lived escarpments: a numerical modeling study, Journal of Geophysical Research, 99(B6), 12229-12243. https://doi.org/10.1029/94JB00320
  59. Tucker, G. E. and Slingerland, R. L., 1996, Predicting sediment flux from fold and thrust belts, Basin Research, 8(3), 329-349. https://doi.org/10.1046/j.1365-2117.1996.00238.x
  60. Tucker, G. E. and Slingerland, R. L., 1997, Drainage basin responses to climate change, Water Resources Research, 33(8), 2031-2047. https://doi.org/10.1029/97WR00409
  61. Tucker, G. E., Lancaster, S. T., Gasparini, N. M., and Bras, R. L., 2001, The Channel-Hillslope Integrated Landscape Development Model (CHILD), in Landscape Erosion and Evolution Modelling, Harmon, R. S. and Doe III, W. W. (eds), pp. 349-388, Kluwer Academic/ Plenum Publishers.
  62. van den Berg, J. H., 1995, Prediction of alluvial channel pattern of perennial rivers, Geomorphology, 12(4), 259-279. https://doi.org/10.1016/0169-555X(95)00014-V
  63. van der Beek, P. and Bishop, P., 2003, Cenozoic river profile development in the Upper Lachlan catchment (SE Australia) as a test quantitative fluvial incision models, Journal of Geophysical Research B: Solid Earth, 108(6).
  64. van der Beek, P. and Braun, J., 1999, Controls on postmid-Cretaceous landscape evolution in the southeastern highlands of Australia: Insights from numerical surface process models, Journal of Geophysical Research B: Solid Earth, 104(B3), 4945-4966. https://doi.org/10.1029/1998JB900060
  65. Whipple, K. X. and Tucker, G. E., 1999, Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs, Journal of Geophysical Research B: Solid Earth, 104(B8), 17661-17674. https://doi.org/10.1029/1999JB900120
  66. Whipple, K. X., Hancock, G. S., and Anderson, R. S., 2000, River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation, Bulletin of the Geological Society of America, 112(3), 490-503. https://doi.org/10.1130/0016-7606(2000)112<490:RIIBMA>2.0.CO;2
  67. Whittow, J. B., 1984, The penguin dictionary of physical geography, Penguin Books.
  68. Willgoose, G., Bras, R. L., and Rodriguez-Iturbe, I., 1991, A coupled channel network growth and hillslope evolution model, 1. Theory, Water Resources Research, 27(7), 1671-1684. https://doi.org/10.1029/91WR00935
  69. Wolman, M. G. and Miller, J. P., 1960, Magnitude and frequency of forces in geomorphic processes, Journal of Geology, 68(1), 54-74. https://doi.org/10.1086/626637
  70. Woo, H., 2001, River hydraulics, Cheongmoongak (우효섭, 2001, 하천수리학, 청문각).