Preparation and Properties of Poly(vinylidene fluoride) Multilayer Films

Poly(vinylidene fluoride) 다층 필름의 제조 및 특성

  • Received : 2010.09.09
  • Accepted : 2010.11.05
  • Published : 2011.03.25

Abstract

Along with the fast development of electronics, the demands of portable electronics and wireless sensors are growing rapidly. The need for self-powering materials capable of powering the electrical devices attached to them is increasing, The piezoelectric effect of polyvinylidene fluoride (PVDF) can be used for this purpose. PVDF has a special crystal structure consisting of a ${\beta}$-phase that can produce piezoelectricity. In this paper, multilayer PVDF films were fabricated to increase the ${\beta}$-phase content. A solution of 10% concentration N;N-dimethylacetamide (DMAc) in PVDF (PVDF/DMAc) was used to fabricate the films via spin coating technique with the following optimum process parameters: a spin rate of 850 rpm, spin time of 60 s, drying temperature of $60^{\circ}C$, and drying time of 30 min, Compared with single-layer PVDF films, the multilayer films exhibited higher ${\beta}$-phase content. The ${\beta}$-phase content of the films increased gradually with increasing number of layers until 4, Maximum ratio of ${\beta}$-phase content was 7.72.

전자 기기의 빠른 발전에 따른 무선 기기들의 사용은 급격히 늘어나고 있다. 그래서 이런 제품에 자가 발전이 가능한 재료를 적용시키는 사례가 점차 늘고 있다. 여기에 사용되는 재료로서 poly(vinylidene fluoride) (PVDF)가 있는데 PVDF는 piezoelectricity를 낼 수 있는 특별한 결정구조인 ${\beta}$-phase를 가지고 있다. 이 논문에서는 piezoelectricity에 결정적인 영향인 ${\beta}$-phase 함량을 증가시키기 위해 다층 PVDF 필름을 제조하였다. 이 PVDF 필름은 용매인 DMAc에 10%로 용해시킨 깃으로 spin rate는 850 rpm, spin time은 60초이며 건조온도는 $60^{\circ}C$이다. 비교적으로 다층 필름은 단열 층보다 더 높은 ${\beta}$-phase함량을 나타내었다 이 ${\beta}$-phase함량은 4-layer 필름이 되기까지 점차 증가되었으며 최대 함량은 7.72이다.

Keywords

References

  1. J. Zheng, A. He, J. Li, and Charles C. Han, Macromol. Rapid Comm., 28, 22 (2007).
  2. K. Tashiro, H. Tadokoro, and M. Kobayashi, Ferroelectrics, 32, 1 (1981). https://doi.org/10.1080/00150198108238666
  3. B. S. Kim and Y. J. Sang, Polymer(Korea), 20, 2 (1996).
  4. G. M. Kamath and A. R. Upadhya, Smart Materials and Applications, REACH Symposium, Bangalore, March 7-10, p.2 (2007).
  5. P. Sajkiewicz, A. Wasiak, and Z. Goclowski, Eur. Polym. J., 35, 3 (1998).
  6. J. Kymissis, C. Kendall, and J. Paradiso, Parasitic Power Harvesting in Shoes, Physics and Media Group MIT Media Laboratory, August (1998).
  7. J. Granstrom, J. Feenstra, H. A. Sodano, and K. Farinholt, Smart Mater. Struct., 16, 1810 (2007). https://doi.org/10.1088/0964-1726/16/5/036
  8. H. A. Sodano and D. J. Inman, JIMSS, 16, 10 (2005).
  9. H. A. Sodano, G. Park, and D. J. Inman, An International J. Experimental Mechanics, 40, 2 (2004).
  10. H. A. Sodano, Daniel J. Inman, and G. H. Park, The Shock and Vibration Digest, 36, 3 (2004).
  11. E. Klimiec, W. Zaraska, and K. Zaraskak, Microelectronics Reliability, 48, 6 (2008).
  12. Y. Yiquan, S. Binwen, and L. Zongjie, IEEE T Ultrason. Ferr. and Frequency Control, 42, 5 (1995).
  13. I. Tasaki, Paul M. Byrne, and M. Masumura, Jpn. J. Physiol., 37, 4 (1987).
  14. B. Hwa and B. C. Kim, J. Korean Fiber Soc., 41, 6 (2004).
  15. M. Benz, W. B. Euler, and O. J. Gregory, Macromolecules, 35, 7 (2002).
  16. http://www.clean.cise.columbia.edu/process/spintheory.pdf.
  17. Z. Zhao, J. Li, X. Yuan, and X. Li, J. Appl. Polym. Sci., 97, 2 (2004).
  18. E. Benedetti, S. Catanorchi, and A. D. Alessio, Polym. Inter., 41, 1 (1996). https://doi.org/10.1002/(SICI)1097-0126(199609)41:1<1::AID-PI556>3.0.CO;2-2
  19. Y. Jiang, Y. Ye, J. Yu, and Z. Wu, Polym. Eng. Sci., 47, 9 (2007).
  20. M. Nasir and H. Matsumoto, J. Polym. Sci. Part B: Polym. Phys., 44, 5 (2006).
  21. S. W. Choi, J. R. Kim, Y. R. Ahn, and S. M. Jo, Chem. Mater., 19, 1 (2007). https://doi.org/10.1021/cm069997g
  22. R. Samatham and K. J. Kim, Polym. Eng. Sci., 46, 7 (2006).
  23. R. J. Gregorio and M. Cestari, J. Polym. Sci. Part B: Polym. Phys., 32, 5 (1994).
  24. B. C. Kim, C. G. Choi, and S. P. Han, Polymer(Korea), 26, 4 (2002).