Preparation and Characterization of Crosslinked Copolymer Membrane Containing Sulfonated Poly(ether sulfone) and p-Phenylene Terephthalamide Segments

Sulfonated Poly(ether sulfone)과 p-Phenylene Terephthalamide 세그먼트를 포함하는 가교 공중합체 멤브레인의 제조 및 특성 연구

  • Kim, Jung-Min (Department of Fiber & Polymer Engineering, Hanyang University) ;
  • Hwang, Seung-Sik (Department of Advanced Materials and Chemical Engineering, Hanyang University) ;
  • Cho, Chang-Gi (Department of Fiber & Polymer Engineering, Hanyang University)
  • 김정민 (한양대학교 섬유고분자공학과) ;
  • 황승식 (한양대학교 신소재공정공학과) ;
  • 조창기 (한양대학교 섬유고분자공학과)
  • Received : 2010.05.12
  • Accepted : 2010.12.08
  • Published : 2011.03.25

Abstract

Aromatic copolyamides were prepared and their applicability to proton exchange membrane was studied. The copolymers contain two segments; thermally stable and mechanically strong poly (p-phenylene terephthalamide) (PPTA), and easily processable and good film-forming polysulfone. For the copolymers, different ratios of amine-terminated sulfonated ether sulfone monomer, terephthaloyl chloride, and p-phenylene diamine were sequentially reacted. The obtained copolymers were mixed with trimethylolpropane triglycidyl ether (TMPTGE), thermally cured, and converted into proton exchange membranes for fuel cell application. The reactions at each step and the molecular characteristics of precursor copolymers were confirmed by $^1H$ NMR, FTIR, and titration. The performance of the membranes was measured in terms of water uptake and proton conductivity. The water uptake, ion exchange capacity (IEC), and proton conductivity of the membranes increased with the increase of sulfonated ether sulfone segment content. Membrane containing 60 mol% sulfonic acid sulfone segment showed 1.88 meq/g IEC value. Water uptake was limited less than 110 wt% and the highest proton conductivity was up to $7.4{\times}10^{-2}$ S/cm ($25^{\circ}C$, RH=100%).

열적 안정성과 기계적 강도에서 우수한 장점을 지니고 있는 파라계 aramid 세그먼트와 제막 특성이 우수하고 내 가수분해성이 우수한 sulfone 세그먼트로 이루어진 공중합체를 이용하여 연료 전지용 막으로써의 응용가능성을 연구하였다. 아라미드 고분자의 용해도를 향상시키기 위해 아민기를 갖는 sulfonated ether sulfone 단량체와 p-phenylene diamine 그리고 terephthaloyl chloride를 일정한 순서로 반응시켜 아민으로 말단화된 공중합체를 합성하고 이것을 epoxy group을 함유하고 있는 trimethylolpropane triglycidyl ether(TMPTGE)와 열 가교를 통해 고분자 전해절막으로 제조되었으며, 전구체의 합성을 비롯한 각 단계의 반응은 $^lH$ NMR, FTIR, 및 적정에 의하여 확인되었다. 얻어진 전해질막은 이온교환용량과 함수율, 수소이온전도도 등이 측정되었으며 sulfonated ether sulfone 단량체의 함유량이 증가할수록 이온교환용량, 함수율, 수소이온전도도가 증가하는 것이 관찰되었다. Sulfonic acid sulfone 세그먼트를 60 몰%로 갖는 고분자 전해질막의 경우 이온교환용량이 1.88 meq/g, 함수율은 110wt% 이하의 수치를 보였으며, 가장 높은 수소이온전도도의 값은 상대습도 100%, $25^{\circ}C$에서 $7.4{\times}10^{-2}$ S/cm이었다.

Keywords

References

  1. K. D. Kreuer, "Hydrocarbon membrane", in Handbook of Fuel Cells: Fundamentals, Technology, Applications, John Wiley and Sons, Inc., England, Vol. 3, p.420, Chapter 33 (2003).
  2. J. S. Kim, R. J. Jackman, and A. Eisenberg, Macromolecules, 27, 2789 (1994). https://doi.org/10.1021/ma00088a021
  3. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, Chem. Rev., 104 ,4587 (2004). https://doi.org/10.1021/cr020711a
  4. A. Taeger, C. Vogel, D. Lehmann, D. Jehnichen, H. Komber, J. Meier-Haack, N. A. Ochoa, S. P. Nunes, and K. V. Peinemann, React. Funct. Polym., 57, 77 (2003). https://doi.org/10.1016/j.reactfunctpolym.2003.10.001
  5. C. Vogel, J. Meier-Haack, A. Taeger, and D. Lehmann, Fuel Cells, 4, 320 (2004). https://doi.org/10.1002/fuce.200400035
  6. J. Meier-Haack, A. Taeger, C. Vogel, K. Schlenstedt, W. Lenk, and D. Lehmann, Sep. Purifi. Technol., 41, 207 (2005). https://doi.org/10.1016/j.seppur.2004.07.018
  7. S. Viale, W. F. Jager, and S. J. Picken, Polymer, 44, 7843 (2003). https://doi.org/10.1016/j.polymer.2003.10.016
  8. S. Viale, A. S. Best, E. Mendes, W. F. Jager, and S. J. Picken, Chem. Commun., 14, 1596 (2004).
  9. S. Viale, N. Li, A. H. M. Schotman, A. S. Best, and S. J. Picken, Macromolecules, 38, 3647 (2005). https://doi.org/10.1021/ma0475636
  10. S. Viale, A. S. Best, E. Mendes, and S. J. Picken, Chem. Commun., 12, 1528 (2005).
  11. C. Sisbandini, H. A. Every, S. Viale, E. Mendes, and S. J. Picken J. Polym. Sci. Part B: Polym. Phys., 45, 666 (2007). https://doi.org/10.1002/polb.21082
  12. S. Konagaya and M. Tokai, J. Appl. Polym. Sci., 76, 913 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000509)76:6<913::AID-APP18>3.0.CO;2-1
  13. S. Konagata, M. Tokai, and H. Kuzumoto, J. Appl. Polym. Sci., 80, 505 (2001). https://doi.org/10.1002/1097-4628(20010425)80:4<505::AID-APP1124>3.0.CO;2-S
  14. J. H. Chen, M. Asano, T. Yamaki, and M. Yoshida, J. Power Sources, 158, 69 (2006). https://doi.org/10.1016/j.jpowsour.2005.09.024
  15. J. L. Qiao, T. Hamaya, and T. Okada, Polymer, 46, 10809 (2005). https://doi.org/10.1016/j.polymer.2005.09.007
  16. S. L. Chen, J. B. Benziger, A. B. Bocarsly, and T. Zhang, J. Ind. Eng. Chem., 44, 7701 (2005). https://doi.org/10.1021/ie050015b
  17. M. Doytcheva, R. Stamenova, V. Zvetkov, and C. B. Tsvetanov, Polymer, 39, 6715 (1998). https://doi.org/10.1016/S0032-3861(98)00133-5
  18. C. Decker and T. N. T. Viet, Macromol. Chem. Phys., 200, 358 (1999). https://doi.org/10.1002/(SICI)1521-3935(19990201)200:2<358::AID-MACP358>3.0.CO;2-V
  19. Y. Liu, J. Y. Lee, and L. Hong, J. Power Sources, 129, 303 (2004). https://doi.org/10.1016/j.jpowsour.2003.11.026
  20. H. J. Jung, J. M. Kim, and C. G. Cho, Polymer(Korea), 34, 202 (2010).
  21. N. Yamazaki, M. Matumoto, and F. Higashi, J. Polym. Sci., Polym. Chem. Ed., 13, 1373 (1975). https://doi.org/10.1002/pol.1975.170130609
  22. J. Perston and W. L. Hofferbert, J. Polym. Sci. Polym. Symp., 65, 13 (1978).
  23. Y. Li, R. A. VanHouten, A. E. Brink, and J. E. McGrath, Polymer, 49, 3014 (2008). https://doi.org/10.1016/j.polymer.2008.04.043
  24. B. R. Einsla, Y. T. Hong, Y. S. Kim, F. Wang, N. Gunduz, and J. E. McGrath, J. Polym. Sci. Part A: Polym. Chem., 42, 862 (2004). https://doi.org/10.1002/pola.11026
  25. E. J. Blanchard and E. E. Graves, Tex. Res., 73, 22 (2003). https://doi.org/10.1177/004051750307300104
  26. T. A. Zawodzinski, M. Neeman, L. O. Sillerud, and S. Gottesfeld, J. Phys. Chem., 95, 6040 (1991). https://doi.org/10.1021/j100168a060
  27. S. Chen, Y. Yin, H. Kita, and K. Okamoto, J. Polym. Sci. Part A: Polym. Chem., 45, 2797 (2007). https://doi.org/10.1002/pola.22036
  28. X. X. Guo, F, Zhai, J. H. Fang, M. Fe Laguna, M. Lopez-Gonzalez, and E. Riande, J. Phys. Chem., 111, 13694 (2007). https://doi.org/10.1021/jp0734631