DOI QR코드

DOI QR Code

Ultrastructural Changes in Cryptosporidium parvum Oocysts by Gamma Irradiation

  • Joung, Mi-Gyo (Department of Environmental and Tropical Medicine, Konkuk University School of Medicine) ;
  • Yun, Se-Jeong (Department of Environmental and Tropical Medicine, Konkuk University School of Medicine) ;
  • Joung, Mi-Joung (Department of Environmental and Tropical Medicine, Konkuk University School of Medicine) ;
  • Park, Woo-Yoon (Department of Radiation Oncology, College of Medicine, Chungbuk National University) ;
  • Yu, Jae-Ran (Department of Environmental and Tropical Medicine, Konkuk University School of Medicine)
  • Received : 2010.11.21
  • Accepted : 2011.01.22
  • Published : 2011.03.15

Abstract

Cryptosporidium parvum is known as one of the most highly resistant parasites to gamma irradiation. To morphologically have an insight on the radioresistance of this parasite, ultrastructural changes in C. parvum sporozoites were observed after gamma irradiation using various doses (1, 5, 10, and 25 kGy) following a range of post-irradiation incubation times (10 kGy for 6, 12, 24, 48, 72, and 96 hr). The ultrastructures of C. parvum oocysts changed remarkably after a 10-kGy irradiation. Nuclear membrane changes and degranulation of dense granules were observed with high doses over 10 kGy, and morphological changes in micronemes and rhoptries were observed with very high doses over 25 kGy. Oocyst walls were not affected by irradiation, whereas the internal structures of sporozoites degenerated completely 96 hr post-irradiation using a dose of 10 kGy. From this study, morphological evidence of radioresistance of C. parvum has been supplemented.

Keywords

References

  1. O'Donoghue PJ. Cryptosporidium and cryptosporidiosis in man and animals. Int J Parasitol 1995; 25: 139-195. https://doi.org/10.1016/0020-7519(94)E0059-V
  2. Mac Kenzie WR, Hoxie NJ, Proctor ME, Gradus MS, Blair KA, Peterson DE, Kazmierczak JJ, Addiss DG, Fox KR, Rose JB, Davis JP. A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply. N Engl J Med 1994; 331: 161-167. https://doi.org/10.1056/NEJM199407213310304
  3. Nichols GL. Food-borne protozoa. Br Med Bull 2000; 56: 209-235. https://doi.org/10.1258/0007142001902905
  4. Kato S, Jenkins MB, Ghiorse WC, Bowman DD. Chemical and physical factors affecting the excystation of Cryptosporidium parvum oocysts. J Parasitol 2001; 87: 575-581. https://doi.org/10.1645/0022-3395(2001)087[0575:CAPFAT]2.0.CO;2
  5. Yu JR, Park WY. The effect of gamma-irradiation on the viability of Cryptosporidium parvum. J Parasitol 2003; 89: 639-642. https://doi.org/10.1645/0022-3395(2003)089[0639:TEOIOT]2.0.CO;2
  6. Lee SU, Joung M, Nam T, Park WY, Yu JR. Quantitative evaluation of infectivity change of Cryptosporidium parvum after gamma irradiation. Korean J Parasitol 2009; 47: 7-11. https://doi.org/10.3347/kjp.2009.47.1.7
  7. DuPont HL, Chappell CL, Sterling CR, Okhuysen PC, Rose JB, Jakubowski W. The infectivity of Cryptosporidium parvum in healthy volunteers. N Engl J Med 1995; 332: 855-859. https://doi.org/10.1056/NEJM199503303321304
  8. Lee SU, Joung M, Nam T, Park WY, Yu JR. Rejoining of gamma-ray-induced DNA damage in Cryptosporidium parvum measured by the comet assay. Exp Parasitol 2010; 125: 230-235. https://doi.org/10.1016/j.exppara.2010.01.021
  9. Yang S, Healey MC. The immunosuppressive effects of dexamethasone administered in drinking water to C57BL/6N mice infected with Cryptosporidium parvum. J Parasitol 1993; 79: 626-630. https://doi.org/10.2307/3283395
  10. Petry F, Robinson HA, McDonald V. Murine infection model for maintenance and amplification of Cryptosporidium parvum oocysts. J Clin Microbiol 1995; 33: 1922-1924.
  11. Sato C, Kojima K, Mishizawa K. Recovery from radiation-induced decrease in cell membrane charge by added adenosine triphosphate and its modification by colchicine or cytochalasin B. Biochem Biophys Res Commun 1975; 67: 22-27. https://doi.org/10.1016/0006-291X(75)90277-6
  12. McClain DE, Trypus CA, May L. Effect of gamma radiation on membrane fluidity of MOLT-4 nuclei. Radiat Res 1990; 123: 263-267. https://doi.org/10.2307/3577731
  13. Montgomery PO, Karney D, Reynolds RC, McClendon D. Cellular and subcellular effects of ionizing radiations. Am J Pathol 1964; 44: 727-746.
  14. Djaczenko W, Starzyk H, Rzucidlo Z. X-ray irradiation induced changes of the nuclear membrane of Kirkman-Robbins tumour cells. Experientia 1973; 29: 83-84. https://doi.org/10.1007/BF01913267
  15. Somosy Z, Thuroczy G, Kubasova T, Kovács J, Szabo LD. Effects of modulated and continuous microwave irradiation on the morphology and cell surface negative charge of 3T3 fibroblasts. Scanning Microsc 1991; 5: 1145-1155.
  16. Barham SS, Walters RA. X-irradiation-induced nuclear lesions in cultured mammalian cells: an ultrastructural analysis. Radiat Res 1978; 76: 105-126. https://doi.org/10.2307/3574931
  17. Harris JR, Adrian M, Petry F. Structure of the Cryptosporidium parvum microneme: a metabolically and osmotically labile apicomplexan organelle. Micron 2003; 34: 65-78. https://doi.org/10.1016/S0968-4328(03)00020-9
  18. Kergonou JF, Braquet M, Rocquet G. Influence of whole-body gamma irradiation upon rat liver mitochondrial fractions. Radiat Res 1981; 88: 377-384. https://doi.org/10.2307/3575669
  19. Erickson GA, Koppenol WH. Effects of gamma-irradiation on isolated rat liver mitochondria. Int J Radiat Biol Relat Stud Phys Chem Med 1987; 51: 147-155. https://doi.org/10.1080/09553008714550581
  20. Tetley L, Brown SM, McDonald V, Coombs GH. Ultrastructural analysis of the sporozoite of Cryptosporidium parvum. Microbiology 1998; 144 (Pt 12): 3249-3255. https://doi.org/10.1099/00221287-144-12-3249
  21. Brandes D, Sloan KW, Anton E, Bloedorn F. The effect of x-irradiation on the lysosomes of mouse mammary gland carcinomas. Cancer Res 1967; 27: 731-746.
  22. Hamberg H, Brunk U, Ericsson JL, Jung B. Cytoplasmic effects of X-irradiation on cultured cells 2. Alterations in lysosomes, plasma membrane, Golgi apparatus, and related structures. Acta Pathol Microbiol Scand A 1977; 85: 625-639.
  23. Hamberg H, Edman P. Induced autophagocytosis in macrophages. Origin of the segregating membranes. Acta Pathol Microbiol Immunol Scand A 1983; 91: 1-8.
  24. Somosy Z, Takats A, Bognar G, Kovacs AL, Telbisz A, Racz A, Kovacs J, Köteles GJ. X-irradiation-induced changes of the prelysosomal and lysosomal compartments and proteolysis in HT-29 cells. Scanning Microsc 1996; 10: 1079-1090; discussion 1090-1091.
  25. Bozzola J, Russell L. Electron Microscopy. Boston, USA. Jones and Bartlett Publishers. 1992, p 460-461.
  26. Nanduri J, Williams S, Aji T, Flanigan TP. Characterization of an immunogenic glycocalyx on the surfaces of Cryptosporidium parvum oocysts and sporozoites. Infect Immun 1999; 67: 2022-2024.

Cited by

  1. A new method for efficient detection of Cryptosporidium RNA by real-time reverse transcription-PCR with surfactants vol.15, pp.5, 2015, https://doi.org/10.2166/ws.2015.063
  2. Discovery of New Microneme Proteins in Cryptosporidium parvum and Implication of the Roles of a Rhomboid Membrane Protein (CpROM1) in Host-Parasite Interaction vol.8, pp.None, 2011, https://doi.org/10.3389/fvets.2021.778560