DOI QR코드

DOI QR Code

자체-감지능 및 광투과도를 지닌 CNT 및 ITO/PET 다기능성 나노복합소재의 계면 조절 연구

Interfacial Control of Multi-functional CNT and ITO/PET Nanocomposites having Self-Sensing and Transparency

  • 왕작가 (경상대학교 나노.신소재공학부, 공학연구원) ;
  • 권동준 (경상대학교 나노.신소재공학부, 공학연구원) ;
  • 구가영 (경상대학교 나노.신소재공학부, 공학연구원) ;
  • 박종만 (경상대학교 나노.신소재공학부, 공학연구원)
  • 발행 : 2011.02.28

초록

자체-감지능 있는 다기능성 나노복합소재를 위해, 투명하고 전도성 있는 카본나노튜브 (CNT)로 코팅된 폴리에틸렌 테레프탈레이트(PET)를 함침 방법으로 제조하였다. CNT 코팅의 전기적 광학적 특정의 변화는 함침 횟수와 CNT용액의 농도에 주로 의존하였다. 결과적으로, CNT 코팅의 표면저항과 투과도는 제조공정의 변수들에 따라 예민하게 조절되었다. CNT 코팅의 표면저항은 4점법과 이중 배열법에 의해 측정되었으며, 광학적 투과도는 UV 스펙트럼을 사용하여 평가하였다. CNT 코팅의 표면특성을 측정한 정적 및 동적 접촉각은 상호 일치함을 보여주었다. 함침 코팅수가 증가함에 따라, CNT코팅한 PET의 표면저항은 현저하게 저하했으나, 투명도는 CNT 네트워크의 특성으로 거의 감소하지 않았다. CNT와 인듐틴옥사이드 (ITO)의 계면 및 전기적 특성들은 피로 시험을 통하여 비교하였다. CNT는 2000회 반복 후에도 표면저항의 변화가 없는 반면에, ITO는 1000회 반복까지 표면저항의 급격한 증가를 보여주었다가 안정화하였다. 이는 형상비가 큰 CNT는 전기 접촉점을 계속 유지하는 반면에, 취성이 있는 ITO는 미세 균열이 발생하여 전지 접촉점을 많이 상실하기 때문이다.

Transparent and conductive carbon nanotube on polyethylene terephthalate (PET) were prepared by dip-coating method for self-sensing multi-functional nanocomposites. The changes in the electrical and optical properties of CNT coating mainly depended on the number of dip-coating, concentration of CNT solution. Consequently, the surface resistance and transmittance of CNT coating were sensitively controlled by the processing parameters. Surface resistance of CNT coating was measured using four-point method, and surface resistance of coated CNT could be better calculated by using the dual configuration method. Optical transmittance of PET film with CNT coating was evaluated using UV spectrum. Surface properties of coated CNT investigated by wettability test via static and dynamic contact angle measurement were consistent with each other. As dip-coating number increased, surface resistance of coated CNT decreased seriously, whereas the transmittance exhibited little lower due to the thicker CNT networks layer. Interfacial microfailure properties were investigated for CNT and indium tin oxide (ITO) coatings on PET substrates by electrical resistance measurement under cyclic loading fatigue test. CNT with high aspect ratio exhibited no change in surface resistance up to 2000 cyclic loading, whereas ITO with brittle nature showed a linear increase of surface resistance up to 1000 cyclic loading and then exhibited the level-off due to reduced electrical contact points based on occurrence of many micro-cracks.

키워드

참고문헌

  1. Allaoui, S. Bai, H. M. Cheng, and J. B. Bai, "Mechanical and electrical properties of a MWNT/epoxy composite," Compos. Sci. & Technol. 62, 1993 (2002). https://doi.org/10.1016/S0266-3538(02)00129-X
  2. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, "Transparent, Conductive Nanotube Films," Science 305, 1273 (2004). https://doi.org/10.1126/science.1101243
  3. M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. V. Williams, K. R. Atkinson, and R. H. Baughman, "Strong, Transparent, Multifunctional, Carbon Nanotube Sheets," Science 309, 1215 (2005). https://doi.org/10.1126/science.1115311
  4. D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, C. Zhou, "Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes," Nano Lett. 2006, 6, 1880. https://doi.org/10.1021/nl0608543
  5. H. E. Unalan, G. Fanchini, A. Kanwal, A. D. Pasquier, M. Chhowalla, "Design Criteria for Transparent Single Walled Carbon Nanotube Thin Film Transistors," Nano Lett. 2006, 6, 677. https://doi.org/10.1021/nl052406l
  6. H. Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, Y. H. Lee, "Effect of acid treatment on carbon nanotube-based flexible transparent conducting films," J. Am. Chem. Soc. 2007, 129, 7758. https://doi.org/10.1021/ja0722224
  7. J. F. Gao, Z. M. Li, Q. J. Meng, Q. Yang, "CNTs/UHMWPE composites with a two-dimensional conductive network," Materi. Lett. 62, 3530 (2008). https://doi.org/10.1016/j.matlet.2008.03.053
  8. Y. I. Song, C. M. Yang, D. Y. Kim, H. Kanoh, and K. Kaneko, "Flexible transparent conducting single-wall carbon nanotube film with network bridging method," J. Colloid Interface Sci. 318, 365 (2008). https://doi.org/10.1016/j.jcis.2007.10.051
  9. C. T. Hsieh, J. M. Chen, Y. H. Huang, R. R. Kou, C. T. Lee, and H. C. Shih, "Influence of fluorine/carbon atomic ratio on superhydrophobic behavior of carbon nanofiber arrays," J. Vac. Sci. Technol. B 24(1), 113 (2006). https://doi.org/10.1116/1.2150224
  10. 왕작가, 공조엘, 박종만, 이우일, 박종규, "Interfacial properties of gradient specimen of CNT-epoxy nanocomposites using micromechanical technique and wettability," 한국복합재료학회지, 22(5), 8 (2009).
  11. J. M. Park, P. G. Kim, J. H. Jang, Z. j. Wang, W. I. Lee, J. G. Park, K. L. DeVries, "Self-sensing and dispersion evaluation of single carbon fiber/carbon nanotube (CNT)-epoxy composites using electro-micromechanical technique and nondestructive acoustic emission," Composites Part B: Engineering, 39, 1170 (2008). https://doi.org/10.1016/j.compositesb.2008.03.004
  12. J. M. Park, Z. J. Wang, J. H. Jang, N. J. R. Gnidakoung, W. I. Lee, J. G. Park, and K. L. DeVries, "Interfacial and hydrophobic evaluation of glass fiber/CNT-epoxy nanocomposites using electro-micromechanical technique and wettability test," Composites: Part A, 40, 1722 (2009). https://doi.org/10.1016/j.compositesa.2009.08.006

피인용 문헌

  1. Nano-Composite's Mechanical and Radioactive Barrier Characteristics by Nano Size CNT & Graphite Particles Alignment vol.26, pp.6, 2013, https://doi.org/10.7234/composres.2013.26.6.355
  2. Manufacturing Functional Nano-Composites by Using Field-Aided Micro-Tailoring Manipulation vol.25, pp.6, 2012, https://doi.org/10.7234/kscm.2012.25.6.178