Nondestructive Techniques for Characterization of Microstructural Evolution during Low Cycle Fatigue of Cu and Cu-Zn Alloy

Cu와 Cu-Zn 합금의 저주기피로 동안 발달한 미세조직 평가를 위한 비파괴기술

  • 김정석 (한양대학교 자동차공학과) ;
  • 장경영 (한양대학교 기계공학부) ;
  • 현창용 (서울과학기술대학교 신소재공학과)
  • Received : 2011.01.03
  • Accepted : 2011.02.11
  • Published : 2011.02.28

Abstract

The object of this study is to evaluate and discriminate nondestructively the dislocation substructures of Cu and Cu-Zn alloy subjected to the low-cycle-fatigue. The ultrasonic wave velocity, electrical resistivity and positron annhilation lifetime(PAL) were measured to the nondestructive testing. Cyclic fatigue test of Cu and Cu-Zn alloy with much different stacking fault energies was conducted and the correlations between dislocation behavior and nondestructive parameters were studied. Dislocation cell substructure was developed in Cu, while planar array of dislocation structure was developed in Cu-35Zn alloy only increasing dislocation density with fatigue cycles. Decrease in ultrasonic wave velocity, increase in electrical resistivity and PAL were shown because of the development of lattice defects, dislocations and vacancies, by cyclic fatigue at room temperature. In contrast to Cu-Zn alloy of the planar-array dislocation substructure showing continuous changes in the nondestructive parameters, it does not make any noticeable changes in the nondestructive parameters after the evolution of dislocation cell substructure in Cu.

본 연구에서는 Cu와 Cu-Zn 합금의 저주기 피로 동안 발달한 전위 하부조직의 변화를 비파괴적으로 구분하고 평가하고자 하였다. 비파괴시험으로 초음파속도, 전기비저항 그리고 양성자소멸시간을 측정하였다. 서로 다른 적층결함 에너지를 갖는 Cu와 Cu-Zn에 대해 반복피로시험을 수행하고 이들 재료에서의 전위거동과 비파괴평가 파라미터와의 상관성을 연구하였다. Cu는 전위셀 하부구조를 형성하였지만, Cu-Zn 합금은 피로 사이클에 따라서 전위밀도는 증가하고 단지 평면배열의 전위구조를 형성하였다. 상온에서의 반복적인 피로에 의해 발달한 격자결함인 전위와 공공으로 인해 초음파속도의 감소, 전기비저항의 증가 그리고 양성자 소멸시간이 증가하였다. 비파괴평가파라미터의 지속적인 변화를 보이는 평면배열의 전위구조를 갖는 Cu-Zn에서와 달리, Cu에서는 전위셀구조가 발달하면서 더 이상의 큰 변화를 보이지 않았다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. C. S. Kim, S. I. Kwun and I. K. Park, "Characterization of creep-fatigue in ferritic 9Cr-1Mo-V-Nb steel using ultrasonic velocity," Journal of Nuclear Materials, Vol. 377, pp. 496-500 (2008) https://doi.org/10.1016/j.jnucmat.2008.04.012
  2. K. Goebbels, "Materials Characterization for Process Control and Product Conformity," pp. 3-37, CRC Press, Florida, USA, (1994)
  3. M. Kobayashi, "Ultrasonic nondestructive evaluation of microstructural changes of solid materials under plastic deformation-Part I. Theory," International Journal of Plasticity, Vol. 14, No. 6, pp. 511-522, (1998) https://doi.org/10.1016/S0749-6419(98)00005-9
  4. H. Kwun and C. M. Teller, "Tensile stress dependence of magnetically induced ultrasonic shear wave velocity change in polycrystalline A-36 steel," Applied Physics Letters, Vol. 41, pp. 144-146 (1982) https://doi.org/10.1063/1.93432
  5. R. E. Hummel, "Electronic Properties of Materials," pp. 67-85, Springer-Verlag, New York, USA (1985)
  6. E. Schafler, M, Zehetbauer, A. Borbely and T. Ungar, "Dislocation densities and internal stresses in large strain cold worked pure iron," Materials Science Engineering A, Vol. 234-236, pp. 445-448 (1997) https://doi.org/10.1016/S0921-5093(97)00168-8
  7. A. K. Eikum and I. Holwech, "Recovery in copper after fatigue at $78^{\circ}K$," Scripta Metallurgica., Vol. 2, pp. 605-609 (1968) https://doi.org/10.1016/0036-9748(68)90144-0
  8. Th. Hehenkamp, Th. Kurschat and W. Luhr-Tanck, "Positron lifetime spectroscopy in copper," Journal of Physics F: Metal Physics, Vol. 16, pp. 981-987 (1986) https://doi.org/10.1088/0305-4608/16/8/012
  9. P. Alexopoulos and J. G. Byrne, "Positron lifetime changes during the fatigue of Cu," Metallurgical Transactions A, Vol. 9, pp. 1978-1829 (1978)
  10. C. E. Feltner and C. Laird, "Cyclic stress-strain response of F.C.C. metals and alloys-II Dislocation structures and mechanisms," Acta Metallurgica, Vol. 15, pp. 1633-1653 (1967) https://doi.org/10.1016/0001-6160(67)90138-1
  11. C. S. Kim, C. J. Lissenden, K. M. Kang and I. K. Park, "Influence of dislocation substructure on ultrasonic velocity under tensile deformation," Journal of the Korean Society for Nondestructive Testing, Vol. 28, No. 6, pp. 477-482 (2008)
  12. 김정석, 남승훈, 현창용, "전기비저항 측정에 의한 구리와 구리합금의 미시적 열화평가," 비파괴검사학회지 Vol. 30, No. 5, pp 444-450 (2010)
  13. C. Y. Lee, J. H. Kwon, H. H. Kim and J. M. Jeong, "Defect analysis in Gd2O2S:Tb by using X-ray radiation with positron annihilation methods," Journal of the Korean Physical Society, Vol. 51, No. 3, pp. 1172-1175 (2007) https://doi.org/10.3938/jkps.51.1172
  14. C. S. Kim, "Nondestructive Assessment of Microstructural Change by Fatigue and Creep," pp. 46-77, Ph. D. Thesis, Korea University, Korea (2007)
  15. P. Lukas and M. Klesnil, "Cyclic stress-strain response and fatigue life of metals in low amplitude region," Materials Science and Engineering, Vol. 11, pp. 345-356 (1973) https://doi.org/10.1016/0025-5416(73)90125-0
  16. A. Granato and K. Lucke, "Theory of dislocation damping due to dislocations," Journal of Applied Physics, Vol. 27, No. 6, pp. 583-593 (1956) https://doi.org/10.1063/1.1722436
  17. A. Granato, A. Hikata and K. Lucke, "Recovery of damping and modulus changes following plastic deformation," Acta Metallurgica, Vol. 6, pp. 470-480 (1958) https://doi.org/10.1016/0001-6160(58)90110-X
  18. A. S. Nowick, "Early work on dislocations and point defects at low and intermediate frequencies," Journal of Alloy and Compounds, Vol. 211-212, pp. 4-6 (1994) https://doi.org/10.1016/0925-8388(94)90436-7
  19. M. Hirao, H. Ogi, N. Suzuki and T. Ohtani, "Ultrasonic attenuation peak during fatigue of polycrystalline copper," Acta Materialia, Vol. 48, pp. 517-524 (2000) https://doi.org/10.1016/S1359-6454(99)00346-8
  20. A. Seeger, "The generation of lattice defects by moving dislocaitons, and its application to the temperature dependence of the flow-stress of F.C.C. crystals," Philosophical Magazine, Vol. 46, pp. 1194-1217 (1995)