Abstract
In this paper, we study the dominating-free sest which is defined as follows: k points called servers and n points called clients in the plane are given. For a point p in the plane is said to be dominated by a client c if for every server s, the distance between s and p is greater than the distance between s and c. The dominating-free set is the set of points in the plane which aren't dominated by any client. We present an O(nklogk+$n^2k$) time algorithm for computing the dominating-free set under the $L_1$-metric. Specially, we present an O(nlogn) time algorithm for the problem when k=2. The algorithm uses some variables and 1-dimensional arrays as its principle data structures, so it is easy to implement and runs fast.