DOI QR코드

DOI QR Code

Double Convective Assembly Coatings of FePt Nanoparticles to Prevent Particle Coalescence during Annealing

  • Hwang, Yeon (Department of Materials Science & Engineering, and Eco-Product & Materials Education Center, Seoul National University of Science and Technology)
  • Received : 2010.12.27
  • Accepted : 2011.01.28
  • Published : 2011.03.27

Abstract

FePt nanoparticles suspension was synthesized by reduction of platinum acetylacetonate and decomposition of iron pentacarbonyl in the presence of oleic acid and oleyl amine. FePt nanoparticles were coated on a substrate by convective assembly from the suspension. To prevent the coalescence during the annealing of FePt nanoparticles double convective coatings were tried. First convective coating was for silica particle assembly on a silicon substrate and second one was for FePt nanoparticles on the previously coated silica layers. It was observed by scanning electron microscopy (SEM) that FePt nanoparticles were dispersed on the silica particle surface. After annealing at $700^{\circ}C$ for 30 minutes under nitrogen atmosphere, FePt nanoparticles on silica particles were maintained in a dispersed state with slight increase of particle size. On the contrary, FePt nanoparticles that were directly coated on silicon substrate showed severe particle growth after annealing due to the close-packing of nanoparticles during assembly. The size variation during annealing was also verified by X-ray diffractometer (XRD). It was suggested that pre-coating, which offered solvent flux oppose to the capillary force between FePt nanoparticles, was an effective method to prevent coalescence of nano-sized particles under high temperature annealing.

Keywords

References

  1. S. Sun, C. B. Murray, D. Weller, L. Folks and A. Moser, Science, 287, 1989 (2000). https://doi.org/10.1126/science.287.5460.1989
  2. M. Chen, J. Kim, J. P. Liu, H. Fan and S. Sun, J. Am. Chem. Soc., 128, 7132 (2006). https://doi.org/10.1021/ja061704x
  3. M. Chen and D. E. Nikles, Nano Letters, 2, 211 (2002). https://doi.org/10.1021/nl015649w
  4. B. G. Prevo and O. D. Velev, Langmuir, 20, 2099 (2004). https://doi.org/10.1021/la035295j
  5. O. Gutfleisch, J. Lyubina, K. -H. Muller and L. Schultz, Adv. Eng. Mater., 7, 208 (2005). https://doi.org/10.1002/adem.200400183
  6. D. Weller and M. F. Doerner, Annu. Rev. Mater. Sci., 30, 611 (2000). https://doi.org/10.1146/annurev.matsci.30.1.611
  7. H. Zeng, J. Li, Z. L. Wang, J. P. Liu and S. Sun, Nano Letters, 4, 187 (2004). https://doi.org/10.1021/nl035004r
  8. D. Weller and A. Moser, IEEE Trans. Magn., 35, 4423 (1999). https://doi.org/10.1109/20.809134
  9. T. Klemmer, D. Hoydick, H. Okumura, B. Zhang and W. A. Soffa, Scripta Metall. Mater., 33, 1793 (1995). https://doi.org/10.1016/0956-716X(95)00413-P
  10. J. W. Harrell, S. Wang, D. E. Nikles and M. Chen, Appl. Phys. Lett., 79, 4393 (2001). https://doi.org/10.1063/1.1427751
  11. C. P. Luo, S. H. Liou and D. J. Sellmyer, J. Appl. Phys., 87, 6941 (2000). https://doi.org/10.1063/1.372893
  12. S. Stappert, B. Rellinghaus, M. Acet and E. F. Wassermann, J. Cryst. Growth, 252, 440 (2003). https://doi.org/10.1016/S0022-0248(03)00935-7
  13. S. Sun, E. E. Fullerton, D. Weller and C. B. Murray, IEEE Trans. Magn., 37, 1239 (2001).
  14. B. G. Prevo, Y. Hwang and O. D. Velev, Chem. Mater., 17, 3642 (2005). https://doi.org/10.1021/cm050416h
  15. A. S. Dimitrov and K. Nagayama, Langmuir, 12, 1303 (1996). https://doi.org/10.1021/la9502251
  16. A. S. Dimitrov, T. Miwa and K. Nagayama, Langmuir, 15, 5257 (1999). https://doi.org/10.1021/la990225r
  17. C. Xu, K. Xu, H. Gu, X. Zhong, Z. Guo, R. Zheng, X. Zhang and B. Xu, J. Am. Chem. Soc., 126, 3392 (2004). https://doi.org/10.1021/ja031776d
  18. V. Salgueirino-Maceira, M. A. Correa-Duarte and M. Farle, Small, 1, 1073 (2005). https://doi.org/10.1002/smll.200500135
  19. C. Liu, X. Wu, T. Klemmer, N. Shukla, D. Weller, A. G. Roy, M. Tanase and D. Laughlin, Chem. Mater., 17, 620 (2005). https://doi.org/10.1021/cm0403457
  20. M. -P. Chen, K. Kuroishi and Y. Kitamoto, IEEE Trans. Magn. 41, 3376 (2005). https://doi.org/10.1109/TMAG.2005.855350
  21. B. A. Jones, J. D. Dutson, K. O’ Grady, B. J. Hickey, D. Li, N. Poudyal and J. P. Liu, IEEE Trans. Magn., 42, 3066 (2006). https://doi.org/10.1109/TMAG.2006.880153
  22. D. Li, N. Poudyal, V. Nandwana, Z. Jin, K. Elkins and J. P. Liu, J. Appl. Phys., 99, 08E911 (2006). https://doi.org/10.1063/1.2166597
  23. M. Mizuno, Y. Sasaki, A. C. C. Yu and M. Inoue, Langmuir, 20, 11305 (2004). https://doi.org/10.1021/la0481694