DOI QR코드

DOI QR Code

기후변화를 고려한 홍수취약성지표의 개발

Development of Flood Vulnerability Index Considering Climate Change

  • 손민우 (인하대학교 해양과학기술연구소) ;
  • 성진영 (롯데건설) ;
  • 정은성 (서울과학기술대학교 건설공학부) ;
  • 전경수 (성균관대학교 사회환경시스템공학부)
  • Son, Min-Woo (Inha University, Ocean Science Technology Institute) ;
  • Sung, Jin-Young (Lotte Construction) ;
  • Chung, Eun-Sung (Seoul National University of Science & Technology, School of Civil Engineering) ;
  • Jun, Kyung-Soo (Sungkynkwan University, Department of Civil and Environmental Engineering)
  • 투고 : 2011.01.03
  • 심사 : 2011.03.14
  • 발행 : 2011.03.31

초록

본 연구에서는 기후변화 요소를 반영하여 홍수취약성지표 (Flood Vulnerability Index, FVI)를 개발하였고 이를 북한강 유역의 6개 중권역에 적용하였다. 기후변화 요소를 고려하기 위해 IPCC의 CGCM3 모형의 A1B와 A2 시나리오를 이용하였고 일단위로 축소화하기 위해 SDSM (Statistical Downscaling Model) 모형을 이용하였다. 홍수취약성 인자를 선정하기 위해 지속가능성 평가모형인 추진력-압력-상태-영향-반응 (Driver-Pressure-State-Impact-Response, DPSIR) 모형을 이용하였고 기후변화로 인한 홍수유출의 특성분석은 연속유출모의모형인 HSPF (Hydrological Simulation Program-Fortran)를 이용하였다. 본 연구에서 개발된 홍수취약성지수는 유역의 현상태 및 기후변화의 영향으로 인한 잠재적 취약성을 정량적인 하나의 지수로 간결하게 표현할 수 있어서 장기 수자원 및 유역관리 정책수립에 사용될 수 있을 것으로 기대된다.

This study aims to develop the Flood Vulnerability Index (FVI) and apply it to the Bukhan River Basin. A1B and A2 scenarios of CGCM3 of IPCC were adopted and SDSM (Statistical Downscaling Model) was used to downscale the original data to the daily data. Driver-Presure-State-Impact-Response (DPSIR) model was introduced to select all appropriate indicators for FVI and the daily rainfall-runoff model was simulated using HSPF (Hydrological Simulation Program-Fortran). Since FIV proposed in this study has a capability to quantify the potential flood vulnerability considering both present and future climate conditions, it is expected to be used for the comprehensive water resources and environmental planning.

키워드

참고문헌

  1. 강민구, 이광만 (2006). “수자원의 지속가능성 평가 지수 개발과 구성 요소의 중요도 평가.” 한국수자원학회논문집, 한국수자원학회, 제39권, 제1호, pp. 59-68. https://doi.org/10.3741/JKWRA.2006.39.1.059
  2. 강민구, 이광만, 고익환, 정찬용 (2008). “요인분석을 이용한 수계 관리 맥락에서 유역관리 상태를 평가하기 위한 통합지수 개발.” 한국수자원학회논문집, 한국수자원학회, 제41권, 제3호, pp. 277-291. https://doi.org/10.3741/JKWRA.2008.41.3.277
  3. 기상연구소 (2004). 기후변화대응 지역기후 시나리오 산출기술개발 (III).
  4. 김병식, 김보경, 경민수, 김형수 (2008). “기후변화가 극한 강우와 I-D-F 분석에 미치는 영향 평가.” 한국수자원학회논문집, 한국수자원학회, 제41권, 제4호, pp. 379-394.
  5. 김호석, 송영일, 김이진, 임영신. (2007). 환경평가와 지속가능발전지표 연계운용 방안에 관한 연구. 한국환경정책·평가연구원.
  6. 박경신, 정은성, 김상욱, 이길성 (2009). “기후변화 및 도시화에 따른 유황곡선 및 BOD 농도지속곡선 변화.” 한국수자원학회논문집, 한국수자원학회, 제42권, 제12호, pp. 1091-1102.
  7. 배덕효, 정일원, 권원태 (2007). “수자원에 대한 기후변화 영향평가를 위한 고해상도 시나리오 생산 (I): 유역별 기후시나리오 구축.” 한국수자원학회논문집, 한국수자원학회, 제40권, 제3호, pp. 191-204.
  8. 안소라, 박민지, 박근애, 김성준 (2009). “기후변화가 경안천 유역의 수문요소에 미치는 영향 평가.” 한국수자원학회논문집, 한국수자원학회, 제42권, 제1호, pp. 33-50. https://doi.org/10.3741/JKWRA.2009.42.1.33
  9. 이동률, 임광섭, 최시중 (2009). “치수특성평가를 위한 홍수위험지수 개발.” 한국수자원학회 2009년 학술발표회, 한국수자원학회, pp. 342-346.
  10. 이재준, 장주영, 곽창재 (2010). “각종 수문기상인자의 경년별 특성변화분석 (I): 기본통계량, 경향성을 중심으로.” 한국수자원학회논문집, 한국수자원학회, 제43권, 제4호, pp. 409-419.
  11. 정은성, 이길성 (2007). “다기준 의사결정기법을 이용한 공간위험 순위산정.” 한국수자원학회논문집, 한국수자원학회, 제40권, 제12호, pp. 969-983. https://doi.org/10.3741/JKWRA.2007.40.12.969
  12. 정은성, 이길성, 박경신 (2008). “다기준 의사결정기법을 이용한 대안평가지수 개발.” 한국수자원학회논문집, 한국수자원학회, 제41권, 제1호, pp. 87-100. https://doi.org/10.3741/JKWRA.2008.41.1.087
  13. 정일원, 이병주, 김광천, 배덕효 (2009). “기후변화에 따른 홍수피해 취약성 평가.” 한국수자원학회 2008년 학술발표회, 한국수자원학회, pp. 289-293.
  14. 최시중, 이동률 (2005). “지속가능한 수자원 개발과 관리를 평가하기 위한 지표.” 한국수자원학회논문집, 한국수자원학회, 제38권, 제9호, pp. 779-790. https://doi.org/10.3741/JKWRA.2005.38.9.779
  15. 최지연, 정지호, 정명국, 최희정 (2008). “DPSIR 구조에 의한 태안군 연안관리 여건과 통합관리 방향.” 대한지리학회논문집, 대한지리학회, 제7권, 제1호, pp. 64-66.
  16. AQUA TERRA (2004). BASIN/HSPF Training Handbook. U.S. EPA.
  17. Bae, D.H., Jung, I.W., and Chang, H. (2008). “Longterm Trend of Precipitation and Runoff in Korean River Basins.” Hydrological Processes, Vol. 22, No. 14, pp. 2644-2656. https://doi.org/10.1002/hyp.6861
  18. Bicknell, B.R., Imhoff, J.C., Kittle, J.L. Jr., Jobes, T.H., and Donigian, A.S. Jr. (2001). Hydrologic Simulation Program-Fortran (HSPF) User's Manual for Version12. U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA.
  19. Carter, J.G., White, I., and Richards, J. (2009). “Sustainability Appraisal and Flood Risk Management.” Environmental Impact Assessment Review, Vol. 29,No. 1, pp. 7-14. https://doi.org/10.1016/j.eiar.2008.06.003
  20. Choi, Y. (2002). “Changes on Frequency and Magnitude of Heavy Rainfall Events in Korea.” Journal of the Korean Data Analysis Society, Vol. 4, No. 3, pp.269-282.
  21. European Environment Agency (1999). Environmental Indicators: Typology and Overview. Copenhagen, Denmark.
  22. Gibbons, J.D. (1971). Nonparametric Statistical Inference. McGraw-Hill, New York.
  23. Hay, L.E., McCabe, G.J., Wolock, D.M., and Ayers, M.A. (1991). “Simulation of Precipitation by Weather Type Analysis.” Water Resources Research, Vol. 27, No. 4, pp. 493-501. https://doi.org/10.1029/90WR02650
  24. Hamouda, M.A., Nour El-Din, M.M., and Moursy, F.I. (2009). “Vulnerability Assessment of Water Resources Systems in the Eastern Nile Basin.” Water Resources Management, Vol. 23, No. 13, pp. 2697-2725. https://doi.org/10.1007/s11269-009-9404-7
  25. IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, UK.
  26. Jung, I.W., Bae, D.H., and Kim, G. (2010). “Recent Trends of Mean and Extreme Precipitation in Korea.” International Journal of Climatology. DOI:10.1002/joc.2069.
  27. Mann, H.B. (1945). “Nonparametric Tests Against Trend.” Econometrica, Vol. 13, pp. 245-259. https://doi.org/10.2307/1907187
  28. Palmer, R., Wiley, M., and Kameenui, A. (2004). Will Climate Change Impact Water Supply and Demand in the Puget Sound? Department of Civil and Environmental Engieering, University of Washington, Seattle, WA.
  29. Panofsy, H.A., and Brire, G.W. (1963). Some Application of Statistics to Meteorology. Pennsylvania State University, University Park, Pennsylvania, p.224.
  30. Pirrone, N., Trombino, G., Cinnirella, S., Algieri, A., Bendoricchio, G., and Palmeri, L. (2005) “The Driver-Pressure-State-Impact-Response (DPSIR) Approach for Integrated Catchment-coastal Zone Management: Preliminaty Application to the Po Catchment-Adriatic Sea Coastal Zone System.” RegionalEnvironmental Change, Vol. 5, No. 2-3, pp. 111-137. https://doi.org/10.1007/s10113-004-0092-9
  31. Skoulickidis, N.Th. (2009). “The Environmental State of Rivers in the Balkans-A Review Within the DPSIR Framework.” Science of the Total Environment, Vol. 407, pp. 2501-2516. https://doi.org/10.1016/j.scitotenv.2009.01.026
  32. Sullivan, C.A. (2002). “Calculating a Water Poverty Index.” World Development, Vol. 30, No. 7, pp. 1195-1210. https://doi.org/10.1016/S0305-750X(02)00035-9
  33. Valenzuela Montes, L.M., and Matáran Ruiz, A. (2008). “Environmental Indicators to Evaluate Spatial and Water Planning in the Coast of Granada (Spain).” Land Use Policy, Vol. 25, No. 1, pp. 95-105. https://doi.org/10.1016/j.landusepol.2007.03.002
  34. Wilby, R.L. (1994). “Stochastic Weather Type Simulation for Regional Climate Change Impact Assessment.” Water Resources Research, Vol. 30, No. 12, pp. 3395-3403. https://doi.org/10.1029/94WR01840
  35. Wilby, R.L., Dawson, C.W., and Barrow, E.M. (2002). “SDSM-A Decision Support Tool for the Assessment of Regional Climate Change Impacts.” Environmental and Modelling Software, Vol. 17, pp. 145-157. https://doi.org/10.1016/S1364-8152(01)00060-3
  36. Wood, A.W., Leung, L.R., Sridhar, V., and Lettenmaier, D.P. (2004). “Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling ClimateModel Outputs.” Climatic Change, Vol. 62, Issue 1-3, pp. 189-216. https://doi.org/10.1023/B:CLIM.0000013685.99609.9e

피인용 문헌

  1. Lake Environmental Risk Index using PSR Framework vol.14, pp.2, 2014, https://doi.org/10.9798/KOSHAM.2014.14.2.317
  2. Climate Change Vulnerability Assessment in Rural Areas - Case study in Seocheon - vol.20, pp.4, 2014, https://doi.org/10.7851/ksrp.2014.20.4.145
  3. A Study on the Assessment Method for High-risk Urban Inundation Area Using Flood Vulnerability Index vol.12, pp.2, 2012, https://doi.org/10.9798/KOSHAM.2012.12.2.245
  4. Degree of the Contribution of Disaster and Safety Education as an Index of Climate Change Vulnerability vol.15, pp.8, 2014, https://doi.org/10.5762/KAIS.2014.15.8.5349
  5. MCDM Approach for Flood Vulnerability Assessment using TOPSIS Method with α Cut Level Sets vol.46, pp.10, 2013, https://doi.org/10.3741/JKWRA.2013.46.10.977
  6. Development of Drought Vulnerability Index Using Delphi Method Considering Climate Change and Trend Analysis in Nakdong River Basin vol.33, pp.6, 2013, https://doi.org/10.12652/Ksce.2013.33.6.2245
  7. Urban Flood Risk Assessment Considering Climate Change Using Bayesian Probability Statistics and GIS : A Case Study from Seocho-Gu, Seoul vol.19, pp.4, 2016, https://doi.org/10.11108/kagis.2016.19.4.036
  8. Assessment of Inundation Risk Degree for Urban Areas vol.13, pp.1, 2013, https://doi.org/10.9798/KOSHAM.2013.13.1.129
  9. Analysis of Urban Infrastructure Risk Areas to Flooding using Neural Network in Seoul vol.35, pp.4, 2015, https://doi.org/10.12652/Ksce.2015.35.4.0997
  10. Analysis of Promising Country for Seawater Desalination Plant Using Delphi Method vol.33, pp.6, 2013, https://doi.org/10.12652/Ksce.2013.33.6.2351
  11. Flood Vulnerability Analysis in Seoul considering Gender Factors vol.18, pp.6, 2018, https://doi.org/10.9798/KOSHAM.2018.18.6.301
  12. Development of the Water Disaster Vulnerability Index and Evaluation of Water Disaster Vulnerability in the Asian Monsoon Region vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.457