DOI QR코드

DOI QR Code

한반도 주변에서 MODIS와 NCEP/NCAR 재분석 자료를 이용한 에어로졸과 구름의 연관성 분석

An Analysis of Aerosol-Cloud Relationship Using MODIS and NCEP/NCAR Reanalysis Data around Korea

  • 김유준 (강릉원주대학교 대기환경과학과) ;
  • 이진화 (강릉원주대학교 대기환경과학과) ;
  • 김병곤 (강릉원주대학교 대기환경과학과)
  • Kim, Yoo-Jun (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University) ;
  • Lee, Jin-Hwa (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University) ;
  • Kim, Byung-Gon (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University)
  • 투고 : 2010.09.15
  • 심사 : 2011.01.03
  • 발행 : 2011.04.30

초록

MODIS/Terra level 3 and NCEP/NCAR Reanalysis data from 2001 to 2008 have been analyzed to understand long-term aerosol and cloud optical properties, and their relationships around Korea. Interestingly, cloud fraction(CF) has the similar annual variation to aerosol optical depth (${\tau}_a$) without any temporal significant trend. Horizontal distributions of ${\tau}_a$ showed the substantial horizontal gradient from China to Korea, especially with the strong difference over the Yellow Sea, which could represent the evidence of the anthropogenic influence from China in the perspective of long-term average. Specifically the negative correlations between ${\tau}_a$ and liquid-phase cloud effective radius ($r_e$) were shown on the monthly-average basis, only in summer with significant associations over the Yellow Sea, but not in the other seasons and/or specific regions. Relationship between ${\tau}_a$ and CF for the low-level liquid-phase clouds exhibited the overall positive correlation, being consistent with cloud lifetime effect. Meanwhile static stability showed no deterministic relationships with ${\tau}_a$ as well as CF. The dependence of aerosol-cloud relationship on the meteorological conditions should be examined more in detail with the satellite remote sensing and reanalysis data.

키워드

참고문헌

  1. Albrecht, B.A. (1989) Aerosol, cloud microphysics, and fractional cloudiness, Sci., 245, 1227-1230. https://doi.org/10.1126/science.245.4923.1227
  2. Breon, F.M., D. Tanre, and S. Generoso (2002) Aerosol effect on cloud droplet size monitored from satellite, Sci., 295, 834-838. https://doi.org/10.1126/science.1066434
  3. Engstrom, A. and A.M.L. Ekman (2010) Impact of meteorological factors on the correlation between aerosol optical depth and cloud fraction, Geophys. Res. Lett., 37(L18814), doi:10.1029/2010GL044361.
  4. Feingold, G., W.L. Eberhard, D.E. Veron, and M. Previdi (2003) First measurements of the Twomey indirect effect using ground-based remote sensor, Geophys. Res. Lett., 30(6), 1287, doi:10.1029/2002GL016633.
  5. Hansen, J.E., M. sato, and R. Ruedy (1997) Radiative forcing and climate response, J. Geophys. Res., 102, 6831-6864. https://doi.org/10.1029/96JD03436
  6. Intergovernment Panel on Climate Change (2007) Climate Change 2007: The Scientific Basis, Cambridge Univ. Press, NY, 1056pp.
  7. Jin, M., J.M. Shepherd, and M.D. King (2005) Urban aerosols and their variations with clouds and rainfall: A case study of New York and Houston, J. Geophys. Res., 110(D10S20), doi:10.1029/2004JD005081.
  8. Kawamoto, K., T. Hayasaka, I. Uno, and T. Ohara (2006) A correlative study on the relationship between modeled anthropogenic aerosol concentration and satelliteobserved cloud properties over east Asia, J. Geophys. Res., 111, D19201, doi:10.1029/2005JD006919.
  9. Kim, B.G. and T.Y. Kwon (2006) Aerosol indirect effect studies derived from ground-based remote sensing, J. Korean Soc. Atmos. Environ., 22(2), 235-247. (in Korean with English abstract)
  10. Kim, B.G., M.A. Miller, S.E. Schwartz, Y. Liu, and Q. Min (2008) The role of adiabaticity in the aerosol first indirect effect, J. Geophys. Res., 113(D05210), doi:10.1029/2007JD008961.
  11. Kim, B.G., S.E. Schwartz, M.A. Miller, and Q. Min (2003) Effective radius of cloud droplets by ground-based remote sensing: Relationship to aerosol, J. Geophys. Res., 108, doi:10.1029/2003JD003721.
  12. Kim, B.G., Y.J. Kim, and S.H. Eun (2008) An analysis of aerosol optical properties around Korea using AERONET, J. Korean Soc. Atmos. Environ., 24(6), 629-640. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2008.24.6.629
  13. Kim, S.W., S.C. Yoon, J.Y. Kim, and S.Y. Kim (2007) Seasonal and monthly variations of columnar aerosol optical properties over east Asia determined from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements, Atmospheric Environment, doi:10.1016/j.atmosenv.2006.10.044.
  14. King, M.D., W.P. Menzel, Y.J. Kaufman, D. Tanre, B.C. Gao, S. Platnick, S.A. Ackerman, L.A. Remer, R. Pincus, and P.A. Hubanks (2003) Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS, IEEE Trans. Geosci. Remote Sensing, 41, 442-458. https://doi.org/10.1109/TGRS.2002.808226
  15. Matsui, T., H. Masunaga, S.M. Kreidenweis, R.A. Pielke Sr., W.K. Tao, M. Chin, and Y.J. Kaufman (2006) Satellite-based assessment of marine low cloud variability associated with aerosol, atmospheric stability, and the diurnal cycle, J. Geophys. Res., 111, D17204, doi:10.1029/2005JD006097.
  16. Min, Q. and L.C. Harrison (1996) Cloud properties derived from surface MFRSR measurements and comparison with GOES results at the ARM SGP site, Geophys. Res. Lett., 23, 1641-1644. https://doi.org/10.1029/96GL01488
  17. Mukai, M., T. Nakajima, and T. Takemura (2008) Anthropogenic impacts on the radiation budget and the cloud field in East Asia based on model simulations with GCM, J. Geophys. Res., 113(D12211), doi:10.1029/2007JD009325.
  18. Nakajima, T., A. Higurashi, K. Kawamoto, and J.E. Penner (2001) A possible correlation between satellite-derived cloud and aerosol microphysical parameters, Geophys. Res. Lett., 28, 1171-1174. https://doi.org/10.1029/2000GL012186
  19. Pandithurai, G., T. Takemura, J. Yamaguchi, K. Miyagi, T. Takano, Y. Ishizaka, S. Dipu, and A. Shimizu (2009) Aerosol effect on cloud droplet size as monitored from surface-based remote sensing over East China Sea region, Geophys. Res. Lett., 36, L13805, doi:10.1029/2009GL038451.
  20. Platnick, S., M.D. King, S.A. Ackerman, W.P. Menzel, B.A. Baum, J.C. Riedi, and R.A. Frey (2003) The MODIS cloud products: Algorithms and examples from Terra, IEEE Trans. Geosci. Remote Sen., 41, 459-473. https://doi.org/10.1109/TGRS.2002.808301
  21. Quaas, J., O. Boucher, and F.-M. Breon (2004) Aerosol indirect effects in POLDER satellite data and the Laboratoire de Meteorologie Dynamique-Zoom (LMDZ) general circulation model, J. Geophys. Res., 109, D08205, doi:10.1029/2003JD004317.
  22. Sekiguchi, M., T. Nakajima, K. Suzuki, K. Kawamoto, A. Higurashi, D. Rosenfeld, I. Sano, and S. Mukai (2003) A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters, J. Geophys. Res., 108(D22), 4699, doi:10.1029/2002JD003359.
  23. Suzuki, K., T. Nakajima, A. Numaguti, T. Takemura, K. Kawamoto, and A. Higurashi (2004) A study of the aerosol effect on a cloud field with simultaneous use of GCM modeling and satellite observation, J. Atmos. Sci., 61, 179-194. https://doi.org/10.1175/1520-0469(2004)061<0179:ASOTAE>2.0.CO;2
  24. Suzuki, K., T. Nakajima, M. Satoh, H. Tomita, T. Takemura, T.Y. Nakajima, and G.L. Stephens (2008) Global cloud-system-resolving simulation of aerosol effect on warm clouds, Geophys. Res. Lett., 35, L19817, doi:10.1029/2008GL035449.
  25. Yoon, S.C., S.W. Kim, S.J. Choi, and I.J. Choi (2010) Regional-scale relationships between aerosol and summer monsoon circulation, and precipitation over Northeast Asia, Asia-Pacific J. Atmos. Sci., 46(3), 279-286, doi:10.1007/s13143-010-1002-3.