DOI QR코드

DOI QR Code

Effects of Ticlopidine on the Pharmacokinetics of Diltiazem and Its Main Metabolite, Desacetyldiltiazem, in Rats

  • Received : 2011.01.14
  • Accepted : 2011.02.23
  • Published : 2011.04.30

Abstract

The purpose of this study was to investigate the effect of ticlopidine on the pharmacokinetics of diltiazem and its active metabolite, desacetyldiltiazem, in rats. Pharmacokinetic parameters of diltiazem and desacetyldiltiazem were determined in rats after oral administration of diltiazem (15 $mg{\cdot}kg^{-1}$) with ticlopidine (3 or 9 $mg{\cdot}kg^{-1}$). The effects of ticlopidine on P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A4 activities were also evaluated. Ticlopidine inhibited CYP3A4 enzyme activity in a concentrationdependent manner with a 50% inhibition concentration ($IC_{50}$) of 35 ${\mu}M$. In addition, ticlopidine did not significantly enhance the cellular accumulation of rhodamine-123 in NCI/ADR-RES cells overexpressing P-gp. Compared with the control (given diltiazem alone), ticlopidine significantly altered the pharmacokinetic parameters of diltiazem. The peak concentration ($C_{max}$) and the area under the plasma concentration-time curve (AUC) of diltiazem were significantly (9 $mg{\cdot}kg^{-1}$, p<0.05) increased in the presence of ticlopidine. The AUC of diltiazem was increased by 1.44-fold in rats in the presence of ticlopidine (9 $mg{\cdot}kg^{-1}$). Consequently, the absolute bioavailability (A.B.) of diltiazem in the presence of ticlopidine (9.3-11.5%) was signifi cantly higher (9 $mg{\cdot}kg^{-1}$, p<0.05) than that in the control group (8.0%). Although ticlopidine significantly (p<0.05) increased the AUC of desacetyldiltiazem, the metabolite-parent AUC ratio (M.R.) in the presence of ticlopidine (9 $mg{\cdot}kg^{-1}$) was significantly decreased compared to that in the control group, implying that ticlopidine could effectively inhibit the metabolism of diltiazem. In conclusion, the concomitant use of ticlopidine significantly enhanced the oral bioavailability of diltiazem in rats by inhibiting CYP3A4-mediated metabolism in the intestine and/or liver rather than by inhibiting intestinal P-gp activity or renal elimination of diltiazem.

Keywords

References

  1. Bogaards, J. J, Bertrand, M., Jackson, P., Oudshoorn, M. J., Weaver, R. J. and van Bladeren, P. J. (2000) Determining the best animal model for human cytochrome P450 activities: a comparison of mouse, rat, rabbit, dog, micropig, monkey and man. Xenobiotica. 30, 1131-1152. https://doi.org/10.1080/00498250010021684
  2. Buckley, M. M. T., Grant, S. M., Goa, K. L., McTabish, D. and Sorkin, E. M. (1990) Diltiazem: A reappraisal of its pharmacological properties and therapeutic use. Drugs 39, 757-806. https://doi.org/10.2165/00003495-199039050-00009
  3. Buur, T., Larsson, R., Berglund, U., Donat, F. D. V. M. and Tronquet, C. (1997) Pharmacokinetics and effect of ticlopidine on platelet aggregation in subjects with normal and impaired renal function. J. Clin. Pharmacol. 37, 108-115. https://doi.org/10.1002/j.1552-4604.1997.tb04768.x
  4. Cao, X., Gibbs, S. T., Fang, L., Miller, H. A., Landowski, C. P. and Shin, H. C. (2006) Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm. Res. 23, 1675-1686. https://doi.org/10.1007/s11095-006-9041-2
  5. Chaffman, M. and Brogden, R. N. (1985). Diltiazem: a review of its pharmacological properties and therapeutic effi cacy. Drugs 29, 387-454. https://doi.org/10.2165/00003495-198529050-00001
  6. Chiou, W. L. (1978) Critical evaluation of the potential error in pharmacokinetic studies of using the linear trapezoidal rule method for the calculation of the area under the plasma level--time curve. J. Pharmacokinet. Biopharm. 6, 539-546. https://doi.org/10.1007/BF01062108
  7. Choi, J. S., Piao, Y. J. and Han, H. K. (2006) Pharmacokinetic interaction between fl uvastatin and diltiazem in rats. Biopharm. Drug Disposition 27, 437-441. https://doi.org/10.1002/bdd.521
  8. Crespi, C. L., Miller, V. P. and Penman, B. W. (1997) Microtiter plate assays for inhibition of human, drug-metabolizing cytochromes P450. Anal. Biochem. 248, 188-190. https://doi.org/10.1006/abio.1997.2145
  9. Gan, L. S. L., Moseley, M. A., Khosla, B., Augustijns, P. F., Bradshaw, T. P., Hendren, R. W. and Thakker. D. R. (1996) CYP3A-Like cytochrome P450-mediated metabolism and polarized effl ux of cyclosporin A in Caco-2 cells: interaction between the two biochemical barriers to intestinal transport. Drug Metab. Dispos. 24, 344-349.
  10. Gent, M., Blakely, J. A., Easton, J. D., Ellis, D. J., Hachinski, V. C. and Harbison, J. W. (1989). The Canadian American ticlopidine study (CATS) in thromboembolic stroke. Lancet 1, 1215-1220.
  11. Gidal, B. E., Sorkness, C. A., McGill, K. A., Larson, R. and Levine, R. R. (1995) Evaluation of a potential enantioselective interaction between ticlopidine and warfarin in chronically anticoagulated patients. Ther. Drug Monit. 17, 33-38. https://doi.org/10.1097/00007691-199502000-00006
  12. Goebel, K. J. and Kolle, E. U. (1985) High performance liquid chromatographic determination of diltiazem and four of its metabolites in plasma. J. Chromatogr. 345, 355-363. https://doi.org/10.1016/0378-4347(85)80172-9
  13. Guengerich, F. P., Martin, M. V., Beaune, P. H., Kremers, P., Wolff, T. and Waxman, D. J. (1986) Characterization of rat and human liver microsomal cytochrome P-450 forms involved in nifedipine oxidation, a prototype for genetic polymorphism in oxidative drug metabolism. J. Biol. Chem. 261, 5051-5060.
  14. Hass, W. K., Easton, J. D., Adams, H. P., Pryse-Phillips, W., Molony, B. A. and Anderson, S. (1989) A randomized trial comparing ticlopidine hydrochloride with aspirin for the prevention of stroke in highrisk patients. N. Engl. J. Med. 321, 501-507. https://doi.org/10.1056/NEJM198908243210804
  15. Haynes, R. B., Sandler, R. S., Larson, E. B., Pater, J. L. and Yatsu, F. M. (1998) A critical appraisal of ticlopidine, a new antiplatelet agent. Effectiveness and clinical indications for prophylaxis of atherosclerotic events. Arch. Intern. Med. 152, 1376-1380.
  16. Homsy, W., Caille, G. and du Souich, P. (1995a) The site of absorption in the small intestine determines diltiazem bioavailability in the rabbit. Pharm. Res. 12, 1722-1726. https://doi.org/10.1023/A:1016217822770
  17. Homsy, W., Lefebvre, M., Caille, G. and du Souich, P. (1995b) Metabolism of diltiazem in hepatic and extrahepatic tissues of rabbits: in vitro studies. Pharm. Res. 12, 609-614. https://doi.org/10.1023/A:1016226601988
  18. Hong, S. P., Chang, K. S., Choi, D. H. and Choi, J. S. (2007) Effects of atorvastatin on the pharmacokinetics of diltiazem and its main metabolite, desacetyldiltiazem, in rats. Arch Pharm Res. 30, 90-95. https://doi.org/10.1007/BF02977783
  19. Ito, K., Kusuhara, H. and Sugiyama, Y. (1999) Effects of intestinal CYP3A4 and P-glycoprotein on oral drug absorption theoretical approach. Pharm. Res. 16, 225-231. https://doi.org/10.1023/A:1018872207437
  20. Ito, M. K., Smith, A. R. and Lee, M. L. (1992) Ticlopidine: a new platelet aggregation inhibitors. Clin. Pharm. 11, 603-617.
  21. Janzon, L., Bergqvist, D., Boberg, J., Boberg, M., Eriksson, I. and Lindgarde, F. (1990) Prevention of myocardial infarction and stroke in patients with intermittent claudication; effects of ticlopidine. Results from STIMS, the Swedish Ticlopidine Multicentre Study. J. Intern. Med. 227, 301-308. https://doi.org/10.1111/j.1365-2796.1990.tb00164.x
  22. Kelly, P. A., Wang, H., Napoli, K. L., Kahan, B. D. and Strobel, H. W. (1999) Metabolism of cyclosporine by cytochromes P450 3A9 and 3A4. Eur. J. Drug Metab. Pharmacokinet. 24, 321-328. https://doi.org/10.1007/BF03190040
  23. Ko, J. W., Desta, Z., Soukhova, N. V., Tracy, T. and Flockhart, D. A. (2000) In vitro inhibition of the cytochrome P450 (CYP450) system by the antiplatelet drug ticlopidine: potent effect on CYP2C9 and CYP2D6. Br. J. Clin. Pharmacol. 49, 343-351.
  24. Kolars, J. C., Schmiedlin-Ren, P., Dobbins, W. O., Schuetz, J., Wrighton, S. A. and Watkins, P. B. (1992) Heterogeneity of cytochrome P450IIIA expression in rat gut epithelia. Gastroenterology 102, 1186-1198.
  25. Lee, Y. H., Lee, M. H. and Shim, C. K. (1991) Pharmacokinetics of diltiazem and deacetyldiltiazem in rats. Int. J. Pharm. 76, 71-76. https://doi.org/10.1016/0378-5173(91)90345-O
  26. Lefebvre, M., Homsy, W., Caille, G. and du Souich, P. (1996) Firstpass metabolism of diltiazem in anesthetized rabbits: role of extrahepatic organs. Pharm. Res. 13, 124-128. https://doi.org/10.1023/A:1016097805003
  27. Lewis, D. F. V. (1996) Cytochrome P450. Substrate specifi city and metabolism. In Cytochromes P450. Structure, Function, and Mechanism, pp.122-123. Taylor & Francis, Bristol.
  28. Narita, H., Otsuka, M., Yabana, H. and Nagao, T. (1986) Hypotensive response of spontaneously hypertensive rats to centrally administered diltiazem and its metabolites: in relevance to the hypotensive action by oral administration. J. Pharmacobiodyn. 9, 547-553. https://doi.org/10.1248/bpb1978.9.547
  29. Pichard, L., Gillet, G., Fabre, I., Dalet-Beluche, I., Bonfi ls, C., Thenot, J. P. and Maurel, P. (1990) Identifi cation of the rabbit and human cytochromes P-450IIIA as the major enzymes involved in the Ndemethylation of diltiazem. Drug Metab. Dispos. 18, 711-719.
  30. Saltiel, E. and Ward, A. (1987) Ticlopidine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutics effi cacy in platelet-dependent disease states. Drugs 34, 222-262. https://doi.org/10.2165/00003495-198734020-00003
  31. Shah, J., Fratis, A., Ellis, D., Murakami, S. and Teitelbaum, P. (1990) Effect of food and antacid on absorption of orally administered ticlopidine hydrochloride. J. Clin. Pharmacol. 30, 733-736. https://doi.org/10.1002/j.1552-4604.1990.tb03635.x
  32. Solomon, D. H. and Hart, R. G. (1994) Antithrombotic therapies for stroke prevention. Curr. Opin. Neurol. 7, 48-53. https://doi.org/10.1097/00019052-199402000-00009
  33. Verhaeghe, R. (1991) Prophylactic antiplatelet therapy in peripheral arterial disease. Drugs 42, 51-57.
  34. Wacher, V. H., Silverman, J. A., Zhang, Y. and Benet, L. Z. (1998) Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics. J. Pharm. Sci. 87, 1322-1330. https://doi.org/10.1021/js980082d
  35. Wacher, V. J., Salphati, L. and Benet, L. Z. (2001) Active secretion and enterocytic drug metabolism barriers to drug absorption. Adv. Drug Deliv. Rev. 46, 89-102. https://doi.org/10.1016/S0169-409X(00)00126-5
  36. Watkins, P. B., Wrighton, S. A., Schuetz, E. G., Molowa, D. T. and Guzelian, P. S. (1987) Identifi cation of glucocorticoid-inducible cytochromes P-450 in the intestinal mucosa of rats and man. J. Clin. Invest. 80, 1029-1036. https://doi.org/10.1172/JCI113156
  37. Weir, M. R. (1995) Diltiazem: ten years of clinical experience in the treatment of hypertension. J. Clin. Pharmacol. 35, 220-232. https://doi.org/10.1002/j.1552-4604.1995.tb04051.x
  38. Yeung, P. K., Feng, J. D. Z. and Buckley, S. J. (1998) Pharmacokinetics and hypotensive effect of diltiazem in rabbits: Comparison of diltiazem with its major metabolites. J. Pharm. Pharmacol. 50, 1247-1253. https://doi.org/10.1111/j.2042-7158.1998.tb03341.x
  39. Yeung, P. K., Prescott, C., Haddad, C., Montague, T. J., McGregor, C., Quilliam, M. A., Xei, M., Li, R., Farmer, P. and Klassen, G. A. (1993) Pharmacokinetics and metabolism of diltiazem in healthy males and females following a single oral dose. Eur. J. Drug Metab. Pharmacokinet. 18, 199-206. https://doi.org/10.1007/BF03188796
  40. Yusa, K. and Tsuruo, T. (1989). Reversal mechanism of multidrug resistance by verapamil: direct binding of verapamil to P-glycoprotein on specifi c sites and transport of verapamil outward across the plasma membrane of K562/ADM cells. Cancer Res. 49, 5002-5006.

Cited by

  1. In Vitro Assessment of the Interaction Potential of Ocimum basilicum (L.) Extracts on CYP2B6, 3A4, and Rifampicin Metabolism vol.11, pp.None, 2011, https://doi.org/10.3389/fphar.2020.00517
  2. Effects of membrane transport activity and cell metabolism on the unbound drug concentrations in the skeletal muscle and liver of drugs: A microdialysis study in rats vol.9, pp.5, 2011, https://doi.org/10.1002/prp2.879