• Title/Summary/Keyword: Diltiazem

Search Result 118, Processing Time 0.076 seconds

Effects of Diltiazem on Norepinephrine-, Phenylephrine- and Clonidine-induced Pressor Response in Rabbits (가토(家兎)에서 Norepinephrine, Phenylephrine 및 Clonidine의 승압반응(昇壓反應)에 대한 Diltiazem의 영향(影響))

  • Shin, Dong-ho;Choi, Soo-hyung
    • Korean Journal of Veterinary Research
    • /
    • v.28 no.1
    • /
    • pp.23-28
    • /
    • 1988
  • To examine the selectivity of diltiazem, used in the cardiovascular diseases, on alpha-1 and alpha-2 adrenoceptor-induced pressor responses, effect of diltiazem on alpha-adrenocepter agonist-induced pressor responses were investigated in urethane-anesthetized rabbits and spinal rabbits. The results are summarized as follows: 1. Intravenous diltiazem(10, 30, 100, 300, $1000{\mu}g/kg$) produced dose-dependent depressor response in rabbits. 2. Pressor responses to intravenous norepinephrine($10{\mu}g/kg$) and phenylephrine ($30{\mu}g/kg$) were inhibited by pretreatment with intravenous diltiazem in rabbits and no difference was noted between the degree of both inhibitions of the pressor response by diltiazem. 3. Presser responses to intravenous norepinephrine ($3{\mu}g/kg$), phenylephrine ($20{\mu}g/kg$) and clonidine ($300{\mu}g/kg$) were inhibited by pretreatment with intravenous diltiazem in spinal rabbits. No difference was noted between the inhibition of norepinephrine-induced pressor response and that of phenylephrine-induced pressor response by diltiazem. The inhibition of clonidine-induced pressor response by diltiazem was slightly prominent than that of norepinephrine- or phenylephrine-induced pressor response. These results suggest that diltiazem significantly inhibits both pressor responses mediated by alpha-1 and alpha-2 adrenoceptors.

  • PDF

Effect of Fluvastatin on the Pharmacokinetics of Diltiazem and its Metabolite, Desacetyldiltiazem in Rats (흰쥐에서 플루바스타틴이 딜티아젬 및 그 대사체인 데스아세틸딜티아젬의 약물동태에 미치는 영향)

  • Piao Yang-Ji;Choi Jun-Shik
    • YAKHAK HOEJI
    • /
    • v.50 no.2
    • /
    • pp.118-123
    • /
    • 2006
  • The aim of this study was to investigate the effect of fluvastatin on the pharmacokinetics of diltiazem and its active metabolite, desacetyldiltiazem, in rats. Pharmacokinetic parameters of diltiazem and desacetyldiltiazem were deter-mined after an oral administration of diltiazem (15 mg/kg) to rats pretreated with fluvastatin (0.5 and 1.5 mg/kg). Compared with the control (given diltiazem alone), the pretreatment of fluvastatin significantly (p<0.05) increased the area under the plasma concentration (AUC), peak plasma concentration $(C_{max})\;and\;K_a$ of diltiazem. Relative bioavailability $(RB\%)$ of diltiazem increased from 1.36- to 1.55-fold. However there were no significant changes in $t_{max},\;K_{el}\;and\;t_{1/2}$ of diltiazem. The pretreatment of fluvastatin also altered the pharmacokintic parameters of desacetyldiltiazem. The pretreatment of fluvastatin (1.5 mg/kg) significantly (p<0.05) increased the AUC of desacetyldiltiazem, whereas the metabolite parent ratio (MR) of desacetyldiatlazem was decreased significantly (p<0.05), suggesting that fluvastatin might inhibit the metabolism of diltiazem. The pretreatment of fluvastatin enhanced the bioavailability of diltiazem in a dose dependent manner at doses ranging from 0.5 to 1.5 mg/kg. further studies for the drug Interaction will be needed in the clinical trials when dilitazem is administrated concomitantly with fluvastatin in humans.

The Influence of Cimetidine on the Pharmacokinetics of Diltiazem and its Main Metabolite in Rabbits

  • Park, Jun-Shik;Burm, Jin-Pil
    • Archives of Pharmacal Research
    • /
    • v.27 no.2
    • /
    • pp.254-258
    • /
    • 2004
  • The purpose of this study was to investigate the pharmacokinetic alteration of diltiazem and its main metabolite, deacetyldiltiazem, after oral administration of diltiazem in rabbits with or with-out cimetidine co-administration. The area under the plasma concentration-time curve (AUC) of diltiazem was significantly elevated in rabbits pretreated with cimetidine, suggesting that the oral clearance, an index of intrinsic clearance, may be decreased by the cimetidine treatment. Consistent with the increased AUC by the treatment, peak plasma concentration ($C_{max}$) for diltiazem was also elevated. Apparent volume of distribution normalized by the bioavailability (($V_{d}$/F) of diltiazem increased sigrificantly in rabbits pretreated with cimetidine increased. Taken together with the fact that the first pass metabolism for diltiazem is the primary determinant for the oral bioavailability, these observations indicate that increases in the oral clearance and (($V_{d}$/F may be a manifestation of the decreased first pass metabolism. Consistent with the hypothesis, the AUC of deacetyldiltiazem was significantly decreased in rabbits with cimetidine treatment. Ratio of deacetyldiltiazem to total diltiazem in the plasma was significantly decreased in rabbits with cimetidine treatment. These observations suggested that the metabolism of diltiazem to deacetyldiltiazem was reduced by cimetidine treatment and that the dosage of diltiazem should be adjusted when the drug is co-administered chronically with cimetidine in a clinical setting.

Effect of Pretreatment of Naringin on the Bioavailability of Diltiazem and Deacetyldiltiazem in Rabbits (토끼에서 나린진이 틸티아젬과 그대사체, 디아세틸딜티아젬의 생체이용율에 미치는 영향)

  • Kim Hyuong Joong;Choi Jun Shik
    • YAKHAK HOEJI
    • /
    • v.49 no.3
    • /
    • pp.230-236
    • /
    • 2005
  • The purpose of this study was to investigate the effect of naringin pretreatment on the bioavailability and phar-macokinetics of diltiazem and one of its metabolites, deacetyldiltiazem, in rabbits. Pharmacokinetic parameters of diltiazem and deacetyldiltiazem were determined after oral administration of diltiazem (15 mg/kg) pretreated with naringin (1.5, 7.5 and 15 mg/kg). Absorption rate constant ($k_a$) of diltiazem after oral administration of diltiazem pretreated with naringin was significantly (p<0.05 or p<0.0l) increased compared to the control group. Area under the plasma concentration-time curve (AUC) and peak concentration ($C_{max}$) of the diltiazem were significantly (p<0.05 or p<0.01) higher than those of the control. Absolute bioavailability ($AB\%$) of diltiazem pretreated with naringin ranged from $13.5\%$ to $18.6\%$, being enhanced compared to that of the control, $7.2\%$. Relative bioavailability ($RB\%$) of diltiazem was $1.9\~2.6$ times higher than that of the control group. There was no significant change in terminal half-life ($t_{1/2}$) and $T_{max}$ of diltiazem in the presence of naringin. AUC of deacetyldiltiazem pretreated with naringin was significantly (p<0.05) higher than (p<0.05) that of the control. But the metabolite ratios (MR) were significantly decreased (p<0.05), implying that pretreatment of naringin could be effective to inhibit the CYP 3A4-mediated metabolism of diltiazem. In this study, pretreatment of naringin significantly enhanced the oral bioavailability of diltiazem. These results suggested that the diltiazem dosage should be adjusted when it is administered with naringin or a naringin-containing dietary supplement in the clinical setting.

Effects of Morin Pretreatment on the Pharmacokinetics of Diltiazem and Its Major Metabolite, Desacetyldiltiazem in Rats

  • Choi Hyun Jin;Choi Jun-Shik
    • Archives of Pharmacal Research
    • /
    • v.28 no.8
    • /
    • pp.970-976
    • /
    • 2005
  • The purpose of this study was to investigate the effect of morin, a flavonoid, on the pharmacokinetics of diltiazem and one of its metabolites, desacetyldiltiazem in rats. Pharmacokinetic parameters of diltiazem and desacetyldiltiazem were determined after oral administration of diltiazem (15 mg/kg) in rats pretreated with morin (1.5, 7.5, and 15 mg/kg). Compared with the control group (given diltiazem alone), pretreatment of morin significantly increased the absorption rate constant $(K_a)$ and peak concentration $(C_{max})$ of diltiazem (p<0.05, p<0.01). Area under the plasma concentration-time curve (AUC) of diltiazem in rats pretreated with morin were significantly higher than that in the control group (p<0.05, p<0.01), hence the absolute bioavailability $(AB\%)$ of diltiazem was significantly higher than that of the control group (p<0.05, p<0.01). Relative bioavailability $(RB\%)$ of diltiazem in rats pretreated with morin was increased by 1.36- to 2.03-fold. The terminal half-life $(t_{1/2})$ and time to reach the peak concentration $(T_{max})$ of diltiazem were not altered significantly with morin pretreatment. AUC of desacetyldiltiazem was increased significantly (p<0.05) in rats pretreated with morin at doses of 7.5 and 15 mg/kg, but metabolite-parent ratio (MR) of desacetyldiltiazem was decreased significantly (p<0.05), implying that pretreatment of morin could be effective to inhibit the CYP 3A4-mediated metabolism of diltiazem. There were no apparent changes of $T_{max}$ and $t_{1/2}$ of desacetyldiltiazem with morin pretreatment. Collectively, the pretreatment of morin significantly altered pharmacokinetics of diltiazem, which can be attributed to increased intestinal absorption as well as reduced first-pass metabolism. Based on these results, dose modification should be taken into consideration when diltiazem is used concomitantly with morin or morin-containing dietary supplements in clinical setting.

Effects of Ticlopidine on the Pharmacokinetics of Diltiazem and Its Main Metabolite, Desacetyldiltiazem, in Rats

  • Choi, Jun-Shik;Yang, Joon-Seung;Choi, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.255-260
    • /
    • 2011
  • The purpose of this study was to investigate the effect of ticlopidine on the pharmacokinetics of diltiazem and its active metabolite, desacetyldiltiazem, in rats. Pharmacokinetic parameters of diltiazem and desacetyldiltiazem were determined in rats after oral administration of diltiazem (15 $mg{\cdot}kg^{-1}$) with ticlopidine (3 or 9 $mg{\cdot}kg^{-1}$). The effects of ticlopidine on P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A4 activities were also evaluated. Ticlopidine inhibited CYP3A4 enzyme activity in a concentrationdependent manner with a 50% inhibition concentration ($IC_{50}$) of 35 ${\mu}M$. In addition, ticlopidine did not significantly enhance the cellular accumulation of rhodamine-123 in NCI/ADR-RES cells overexpressing P-gp. Compared with the control (given diltiazem alone), ticlopidine significantly altered the pharmacokinetic parameters of diltiazem. The peak concentration ($C_{max}$) and the area under the plasma concentration-time curve (AUC) of diltiazem were significantly (9 $mg{\cdot}kg^{-1}$, p<0.05) increased in the presence of ticlopidine. The AUC of diltiazem was increased by 1.44-fold in rats in the presence of ticlopidine (9 $mg{\cdot}kg^{-1}$). Consequently, the absolute bioavailability (A.B.) of diltiazem in the presence of ticlopidine (9.3-11.5%) was signifi cantly higher (9 $mg{\cdot}kg^{-1}$, p<0.05) than that in the control group (8.0%). Although ticlopidine significantly (p<0.05) increased the AUC of desacetyldiltiazem, the metabolite-parent AUC ratio (M.R.) in the presence of ticlopidine (9 $mg{\cdot}kg^{-1}$) was significantly decreased compared to that in the control group, implying that ticlopidine could effectively inhibit the metabolism of diltiazem. In conclusion, the concomitant use of ticlopidine significantly enhanced the oral bioavailability of diltiazem in rats by inhibiting CYP3A4-mediated metabolism in the intestine and/or liver rather than by inhibiting intestinal P-gp activity or renal elimination of diltiazem.

Two-Dimensional Echocardiographic Preoperative Prediction of Prosthetic Valve Size (이면성 심초음파도로 구한 대동맥판륜부 크기와 실제 치환된 판막크기와의 비교연구)

  • 정태은
    • Journal of Chest Surgery
    • /
    • v.21 no.6
    • /
    • pp.979-983
    • /
    • 1988
  • Calcium channel blockers may prevent myocardial injury during cardioplegia and reperfusion. This study was done to evaluate the effects of diltiazem cardioplegia on myocardial protection during ischemic arrest and recovery of myocardial function after reperfusion. Four formulations of crystalloid cardioplegic solutions, GIK solution[group I, n=12], diltiazem[lug/ml GIK] in GIK solution[group II, n=7], ],diltiazem[2ug/ml GIK] in GIK solution[group III, n=6] and diltiazem[4ug/ml GIK] in GIK solution[group IV, n=6] were compared in isolated working rat heart subjected to a long period [2 hours] of hypothermic arrest with multi-dose infusion. Diltiazem cardioplegia[group II, III and IV]was found to be superior in nearly all aspects. Diltiazem cardioplegia showed faster recovery of regular rhythm and lower incidence of ventricular fibrillation than group I did. In comparing mechanical function in all experimental hearts, the mean postischemic recoveries of aortic flow, cardiac output, peak aortic pressure, stroke volume and stroke work[expressed as a percentage of its preischemic control] were significantly greater in group II, III and IV[diltiazem cardioplegia] than in group I. The infused amount of cardioplegic solution was more increased by the addition of diltiazem to GI K solution. [p < 0.01] Creatine kinase leakage tended to be lower in hearts receiving diltiazem cardioplegia, especially in group III and IV[p<0.05] than in those receiving GIK solution only[group I]. Diltiazem cardioplegia results in the increased flow of cardioplegic solution and the decreased ischemic injury of myocardium during ischemic arrest and the improved recovery of myocardial function after reperfusion, and a dose-response relation must be established before clinical use.

  • PDF

Drug Interaction between Cimetidine and Diltiazem in Rabbits (가토에서 딜티아젬과 시메티딘과의 약물상호작용)

  • Lee, Jin-Hwan;Choi, Jun-Shik;Moon, Young-Min
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.3
    • /
    • pp.209-213
    • /
    • 2002
  • Diltiazem inhibits calcium channels and Iεads to vascular smooth muscle rεlaxation and negative inotropic and chronotropic effects in the hεart. Diltiazem is almost completely absorbεd after oral administration, but its extent of absolute oral bioavailability is reduced because of considerable first-pass hepatic metabolism. Diltiazem is able to dilate renal vasculature and can increase the glomerular filtration rate and renal sodium excretion. The purpose of this study was to report the pharmacokinetic changes of diltiazem after oral administration of diltiazem, 20 mg/kg, in rabbits coadministered with cimetidine, 20 mg/kg and pretreated twice per day for 3 days at cimetidine dose of 20 mg/kg. The area under the plasma concentration-time curve (AUC) of diltiazem was significantly higher in rabbits pretreated with cimetidine than that in control rabbits (p<0.01), showing about 149% increased relative bioavailability. The peak plasma concentration $(C_{max})$ and elimination half-life of diltiazem were increased significantly (p<0.05) in rabbits pretreated with cimetidine compared with those in control rabbits. This findings could be due to significant reduction of elimination rate constant by pretreated with cimetidine. The effects of cimetidine on the pharmacokinetics of oral diltiazem were more considerable in rabbits pretreated with cimetidine compared with those in control rabbits. The results suggest that the dosage of diltiazem should be adjusted when the drug would be co-administerεd chronically with cimetidine in a clinical situation.

Norepinephrine과 Angiotensin II의 혈압상승작용에 대한 Diltiazem의 영향

  • 고석태;임동윤;유강준;최홍석;심기정
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.298-298
    • /
    • 1994
  • Norepinephrine이나 angotensin II가 그 작용을 나타내는데 $Ca^{+2}$의 세포내 유입 또는 유출과 밀접한 관련이 있다는 관점에서 $Ca^{+2}$ -channel차단제중 benzothiazenpine계인 diltiazem의 norepinephrine과 angiotensin II의 혈압상승작용에 대한 영향을 가토에서 관찰하였다. Norepinephrine과 angiotensin II의 혈압상승작용에 대한 diltiazem의 영향을 관찰하는 경우는 diltiazem을 투여한 일정시간후에 norepinephrine이나 angiotensin II을 투여하여 나타나는 혈압변화를 diltiazem투여전의 norepinephrine이나 angiotensin II의 혈압상승치와 비교 검토하였다. Diltiazem은 norepinephrine과 angiotensin II의 혈압상승작용을 억재하였으나 그 억제 시간은 지속적이지 않았다. 이와는 달리 diltiazem투여 30-40분에는 norepinephrine의 혈압상승작용의 강화현상이 나타났다. Diltiazem은 교감신경말단차단제인 bethanidine이나 신경절 차단제인 chlorisondamine 처리 가토에서도 norepinephrine이나 angiotensin II의 혈압상승작용을 억제하였다.

  • PDF

Effects of Intracerebroventricular Calcium Antagonists on Changes of Blood Pressure and Heart Rate by Methoxamine and Clonidine in Rabbits (가토에서 뇌실내 Calcium Antagonists가 Methoxamine과 Clonidine의 혈압및 심박수 변동에 미치는 영향)

  • Kim, Jong-Keun;Baik, Yung-Hong
    • The Korean Journal of Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.115-122
    • /
    • 1986
  • To delineate the relationship between subtypes of central alpha-adrenoceptor and central calcium channel, influences of intracerebroventricular (icv) diltiazem and nifedipine on the changes of blood pressure and heart rate by icv methoxamine and clonidine were investigated in urethane-anesthetized rabbits. 1) Methoxamine (1mg, icv) produced pressor and bradycardiac effect and clonidine $(30\;{\mu}g,\;icv)$ produced hypotension and bradycardia. 2) Icv diltiazem and nifedipine elicited dose-dependent deprcssor and bradycardiac responses. The depressor response to nifedipine was more prominent than that to diltiazem but the bradycardiac effect of nifedipine was smaller than that of diltiazem. The depressor responses to icy nifedipine $(35{\mu}g)$ and icv diltiazem $(400{\mu}g)$ were persistent but those to intravenous (iv) nifedipine $(35{\mu}g/kg)$ and diltiazem $(200{\mu}g/kg)$ were transient. 3) The pressor response to methoxamine was little affected by pretreatment with in diltiazem $(400{\mu}g)$ or icv nifedipine $(35,\;350{\mu}g)$ but the bradycardiac response to methoxamine was significantly attenuated by the same pretreatment. 4) The depressor response to clonidine was markedly attenuated by pretreatment with icv diltiazem $(400{\mu}g)$ or icv nifedipine $(35,\;350{\mu}g)$ but not affected by pretreatment with iv diltiazem $(200{\mu}g/kg)$ or iv nifedipine $(20{\mu}g/kg)$. Pretreatment with icv and iv diltiazem or nifedipine reduced the bradycardiac effect of clonidine. 5) Pretreatment with icv clonidine had no effect on the depressor and bradycardiac responses to in diltiazcm or icv nifedipine. These results indicate that diltiazem and nifedipine have no effect on icv methoxamine-induced pressor response elicited by the activation of central alpha-l adrenoceptors whereas the icv clonidine-induccd depressor and bradycardiac effects which result from the activation of central alpha-2 adrenoceptors are inhibited by the calcium antagonists.

  • PDF