References
-
Abe, E., Murai, S., Masuda, Y., Saito, H. and Itoh, T. (1993)
${\alpha}$ -Sialyl cholesterol reverses AF64A-induced defi cit in passive avoidance response and depletion of hippocampal acetylcholine in mice. Br. J. Pharmacol. 108, 387-392. https://doi.org/10.1111/j.1476-5381.1993.tb12814.x - Barnes, C. A. (1979) Memory defi cits associated with senescence: a neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol. 93, 74-104. https://doi.org/10.1037/h0077579
- Bessho, T., Takashina, K., Eguchi, J., Komatsu, T. and Saito, K. (2008) MKC-231, a choline-uptake enhancer: (1) long-lasting cognitive improvement after repeated administration in AF64A-treated rats. J. Neural Transm. 115, 1019-1025. https://doi.org/10.1007/s00702-008-0053-4
-
Chen, C., Lang, S., Zuo, P., Yang, N. and Wang, X. (2008) Treatment with dehydroepiandrosterone increases peripheral benzodiazepine receptors of mitochondria from cerebral cortex in
$_{D}$ -galactose-induced aged rats. Basic Clin. Pharmacol. Toxicol. 103, 493-501. https://doi.org/10.1111/j.1742-7843.2008.00288.x - Coyle, J. T., Price, D. L. and DeLong, M.R. (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219, 1184-1190. https://doi.org/10.1126/science.6338589
- Cui, X., Zuo, P., Zhang, Q., Li, X., Hu, Y., Long, J., Packer, L. and Liu, J. (2006) Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid. J. Neurosci. Res. 83, 1584-1590. https://doi.org/10.1002/jnr.20845
- Egashira, N., Yuzurihara, M., Hattori, N., Sakakibara, I. and Ishige, A. (2003) Ninjin-yoei-to (Ren-Shen-Yang-Rong-Tang) and Polygalae radix improves scopolamine-induced impairment of passive avoidance response in mice. Phytomedicine 10, 467-473. https://doi.org/10.1078/094471103322331403
- Ellman, G. L., Courtney, K. D., Andres, V. Jr. and Featherstone, R. M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
- Floyd, R. and Hensley, K. (2002) Oxidative stress in brain aging implications for therapeutics of neurodegenerative diseases. Neurobiol. Aging 23, 795-807. https://doi.org/10.1016/S0197-4580(02)00019-2
- Hsieh, H., Wua, W. and Hu, M. (2009) Soy isofl avones attenuate oxidative stress and improve parameters related to aging and Alzheimer’s disease in C57BL/6J mice treated with D-galactose. Food Chem. Toxicol. 47, 625-632. https://doi.org/10.1016/j.fct.2008.12.026
- Kang, Y. K., Nam, S. H., Sohn, H. O. and Lee, D. W. (2006) Inhibitory effect of silkworm-extract (SE) on monoamine oxidase activity in vitro and in vivo. Entomol. Res. 35, 189-193. https://doi.org/10.1111/j.1748-5967.2005.tb00158.x
- Kang, Y. K., Oh, H. S., Cho, Y. H., Kim, Y. J. Han, Y. G. and Nam, S. H. (2010) Effects of a silkworm extract on dopamine and monoamine oxidase-B activity in an MPTP-induced Parkinson’s disease model. Lab. Anim. Res. 26, 287-292. https://doi.org/10.5625/lar.2010.26.3.287
- Kaplan, L. A. and Pesce, A. J. (1996) Clinical chemistry. Mosby, St. Louis.
- Karakida, F., Ikeya, Y., Tsunakawa, M., Yamaguchi, T., Ikarashi, Y., Takeda, S. and Aburada, M. (2007) Cerebral protective and cognition-improving effects of sinapic acid in rodents. Biol. Pharm. Bull. 30, 514-519. https://doi.org/10.1248/bpb.30.514
- Kasa, P., Rakonczay, Z. and Gulya, K. (1997) The cholinergic system in Alzheimer's disease. Prog. Neurobiol. 52, 511-535. https://doi.org/10.1016/S0301-0082(97)00028-2
- Kato, N., Sato, S., Yamanaka, A., Yamada, H., Fuwa, N. and Nomura, M. (1998) Silk protein, sericin, inhibits lipid peoxidation and tyrosinase activity. Biosci. Biotechnol. Biochem. 62, 145-147. https://doi.org/10.1271/bbb.62.145
- Kim, K., Park, S., Yoo, H. K., Lee, J. Y., Jung, H. Y., Kim, D. H., Lee, H. J., Kim, J. Y., Youn, Y. C., Marshall, M. R., Kim, S. S. and Jeong, Y. (2009) Brain factor-7 extracted from Bombyx mori enhances cognition and attention in normal children. J. Med. Food 12, 643-648. https://doi.org/10.1089/jmf.2008.1236
- Kim, S. U. (2004) Human neural stem cells genetically modifi ed for brain repair in neurological disorders. Neuropathology 24, 159-171. https://doi.org/10.1111/j.1440-1789.2004.00552.x
- Kim, T, M., Ryu, J. M., Seo, I. K., Lee, K. M., Yeon, S., Kang, S., Hwang, S. Y. and Kim, Y. B. (2008) Effects of red ginseng powder and silk peptide on hypercholesterolemia and atherosclerosis in rabbits. Lab. Anim. Res. 24, 67-75.
- Kim, Y. B., Hur, G. H., Shin, S., Sok, D. E., Kang, J. K. and Lee, Y. S. (1999) Organophosphate-induced brain injuries: delayed apoptosis mediated by nitric oxide. Environ. Toxicol. Pharmacol. 7, 147-152. https://doi.org/10.1016/S1382-6689(99)00006-X
- Kim, Y. B., Shin, S., Sok, D. E. and Kang, J. K. (1998) Effectiveness of procyclidine in combination with carbamate prophylactics against diisopropylfl uorophosphate poisoning. Environ. Toxicol. Pharmacol. 5, 43-49. https://doi.org/10.1016/S1382-6689(97)10005-9
- Kumar, A., Prakasj, A. and Dogra, S. (2010) Naringin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by D-galactose in mice. Food Chem. Toxicol. 48, 626-632. https://doi.org/10.1016/j.fct.2009.11.043
- Lee, H. J., Kim, K. S., Kim, E. J., Choi, H. B., Lee, K. H., Park, I. H., Ko, Y., Jeong, S. W. and Kim, S. U. (2007a) Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model. Stem Cells 25, 1204-1212. https://doi.org/10.1634/stemcells.2006-0409
- Lee, J. Y., Lee, S. H., Sung, J. J., Kim, E. T., Cho, H. J., Kim, K. H., Kang, Y. K., Kim, S. S., Kwon, O. S. and Lee, W. B. (2005) The effect of BF-7 on the ischemia-induced learning and memory defi cits. Korean J. Anat. 38, 181-188.
- Lee, K. G., Yeo, J. H., Lee, Y. W., Kweon, H. Y., Woo, S. O., Han, S. M. and Kim, J. H. (2003) Studies on industrial utilization of silk protein. Korean J. Food Ind. 36, 25-37.
- Lee, S. H., Cho, H. N., Hyun, C. K. and Jew, S. S. (2002) Physiology functional characteristic of silk peptide. Food Sci. Ind. 35, 57-62.
- Lee, Y., Park, M., Choi, J., Kim, J., Nam, M. and Jeong, Y. (2007b) Effects of silk protein hydrolysates on blood glucose level, serum insulin and leptin secretion in OLEFT rats. J. Korean Soc. Food Sci. Nutr. 36, 703-707. https://doi.org/10.3746/jkfn.2007.36.6.703
- Lei, M., Hua, X., Xiao, M., Ding, J., Han, Q. and Hu, G. (2008) Impairments of astrocytes are involved in the D-galactose-induced brain aging. Biochem. Biophys. Res. Commun. 369, 1082-1087. https://doi.org/10.1016/j.bbrc.2008.02.151
-
Lu, J., Zheng, Y. L., Wu, D. M., Luo, L., Sun, D. X. and Shan, Q. (2007) Ursolic acid ameliorates cognition defi cits and attenuates oxidative damage in the brain of senescent mice induced by
$_{D}-galactose$ . Biochem. Pharmacol. 74, 1078-1090. https://doi.org/10.1016/j.bcp.2007.07.007 - Matsuo, A., Bellier, J. P., Hisano, T., Aimi, Y., Yasuhara, O., Tooyama, I., Saito, N. and Kimura, H. (2005) Rat choline acetyltransferase of the peripheral type differs from that of the common type in intracellular translocation. Neurochem. Int. 46, 423-433. https://doi.org/10.1016/j.neuint.2004.11.006
- Miquel, J., Economos, A. C., Fleming, J. and Johnson, J. E. Jr. (1980) Mitochondrial role in cell aging. Exp. Gerontol. 15, 575-591. https://doi.org/10.1016/0531-5565(80)90010-8
- Musial, A., Bajda, M. and Malawska, B. (2007) Recent developments in cholinesterases inhibitors for Alzheimer’s disease treatment. Curr. Med. Chem. 14, 2654-2679. https://doi.org/10.2174/092986707782023217
- Park, D., Kim, T. K., Yeon, S., Lee, S. H., Choi, Y. J., Bae, D. K., Yang, Y. H., Yang, G., Joo, S. S., Lim, W. T., Lee, J. Y., Lee, J., Jeong, H. S., Hwang, S. Y. and Kim, Y. B. (2010). Tyrosine-fortifi ed silk amino acids improve physical function of Parkinson’s disease rats. Food Sci. Biotechnol. 20, 79-84. https://doi.org/10.1007/s10068-011-0011-z
- Park, K. J., Hong, S. E., Do, M. S. and Hyun, C. K. (2002) Stimulation of insulin secretion by silk fi broin hydrolysate in streptozotocininduced diabetic rat and db/db mice. Korean J. Pharmacogn. 33, 21-28.
- Reddy, P. H. (2007) Mitochondrial dysfunction in aging and Alzheimer’s disease: strategies to protect neurons. Antioxid. Redox Signal. 9, 1647-1658. https://doi.org/10.1089/ars.2007.1754
- Rosenzweig, E. S. and Barnes, C. A. (2003) Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog. Neurobiol. 69, 143-179. https://doi.org/10.1016/S0301-0082(02)00126-0
- Shin, S., Park, D., Yeon, S., Jeon, J. H., Kim, T. K., Joo, S. S., Lim, W. T., Lee, J. Y. and Kim, Y. B. (2009a) Stamina-enhancing effects of silk amino acid preparations in mice. Lab. Anim. Res. 25, 127-134.
- Shin, S., Yeon, S., Park, D., Oh, J., Kang, H., Kim, S., Joo, S. S., Lim, W. T., Lee, J. Y., Choi, K. C., Kim, K. Y., Kim, S. U., Kim, J. C. and Kim, Y. B. (2009b). Silk amino acids improve physical stamina and male reproductive function of mice. Biol. Pharm. Bull. 33, 273-278.
-
Song, X., Bao, M., Li, D. and Li, Y. (1999) Advanced glycation in
$_{D}-galactose$ induced mouse aging model. Mech. Ageing Dev. 108, 239-251. https://doi.org/10.1016/S0047-6374(99)00022-6 - Takashina, K., Bessho, T., Mori, R., Eguchi, J. and Saito, K. (2008) MKC-231, a choline uptake enhancer: (2) Effect on synthesis and release of acetylcholine in AF64A-treated rats. J. Neural Transm. 115, 1027-1035. https://doi.org/10.1007/s00702-008-0048-1
- Terry, A. V. and Buccafusco, J. J. (2003) The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive defi cits: recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther. 306, 821-827. https://doi.org/10.1124/jpet.102.041616
- Terry, R. D. and Davies, P. (1980) Dementia of the Alzheimer type. Annu. Rev. Neurosci. 3, 77-95. https://doi.org/10.1146/annurev.ne.03.030180.000453
- Tsai, K. J., Tsai, Y. C. and Shen, C. K. J. (2007) G-CSF rescues the memory impairment of animal models of Alzheimer's disease. J. Exp. Med. 204, 1273-1280. https://doi.org/10.1084/jem.20062481
- Wang, Q., Iwasaki, K., Suzuki, T., Arai, H,, Ikarashi, Y., Yabe, T., Toriizuka, K., Hanawa, T., Yamada, H. and Sasaki, H. (2000) Potentiation of brain acetylcholine neurons by Kami-Untan-To (KUT) in aged mice: implications for a possible antidementia drug. Phytomedicine 7, 253-258. https://doi.org/10.1016/S0944-7113(00)80041-0
- Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T. and Delon, M. R. (1982) Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 215, 1237-1239. https://doi.org/10.1126/science.7058341
- Yamazaki, N., Kato, K., Kurihara, E. and Nagaoka, A. (1991) Cholinergic drugs reverse AF64A-induced impairment of passive avoidance learning in rats. Psychopharmacology (Berl.) 103, 215-222. https://doi.org/10.1007/BF02244206
- Zeevalk, G. D., Bernard, L. P., Song, C., Gluck, M. and Ehrhart, J. (2005) Mitochondrial inhibition and oxidative stress: reciprocating players in neurodegeneration. Antioxid. Redox Signal. 7, 1117-1139. https://doi.org/10.1089/ars.2005.7.1117
- Zhaorigetu, S., Yanaka, N., Sasaki, M., Watanabe, H. and Kato, N. (2003) Silk protein, sericin, suppresses DMBA-TPA-induced mouse skin tumorigenesis by reducing oxidative stress, infl ammatory responses and endogenous tumor promoter TNF-alpha. Oncol. Rep. 10, 536-543.
Cited by
- Effects of Silk Peptides Administration on Fat Utilization Over a Whole Day in Mice vol.20, pp.4, 2016, https://doi.org/10.20463/jenb.2016.0055
- Neuroprotective Effects of a Butanol Fraction of Rosa hybrida Petals in a Middle Cerebral Artery Occlusion Model vol.21, pp.6, 2013, https://doi.org/10.4062/biomolther.2013.067
- Silk and silkworm pupa peptides suppress adipogenesis in preadipocytes and fat accumulation in rats fed a high-fat diet vol.51, pp.8, 2012, https://doi.org/10.1007/s00394-011-0280-6
- Nutrition Supplements to Stimulate Lipolysis: A Review in Relation to Endurance Exercise Capacity vol.62, pp.3, 2016, https://doi.org/10.3177/jnsv.62.141
- Improvement of cognitive function and physical activity of aging mice by human neural stem cells over-expressing choline acetyltransferase vol.34, pp.11, 2013, https://doi.org/10.1016/j.neurobiolaging.2013.04.026
- A silk peptide fraction restores cognitive function in AF64A-induced Alzheimer disease model rats by increasing expression of choline acetyltransferase gene vol.314, 2017, https://doi.org/10.1016/j.taap.2016.11.008
- Cereboost™, an American ginseng extract, improves cognitive function via up-regulation of choline acetyltransferase expression and neuroprotection vol.78, 2016, https://doi.org/10.1016/j.yrtph.2016.04.006
- Oral Administration of Silk Peptide Enhances the Maturation and Cytolytic Activity of Natural Killer Cells vol.18, pp.5, 2018, https://doi.org/10.4110/in.2018.18.e37
- Silk Peptide Intake Increases Fat Oxidation at Rest in Exercised Mice vol.59, pp.3, 2011, https://doi.org/10.3177/jnsv.59.250
- Effects of Snake Venom Pharmacopuncture on a Mouse model of Cerebral Infarction vol.36, pp.3, 2011, https://doi.org/10.13045/jar.2019.00073
- Identification and applications of neuroactive silk proteins: a narrative review vol.17, pp.3, 2011, https://doi.org/10.32725/jab.2019.012