DOI QR코드

DOI QR Code

Improving Effect of Silk Peptides on the Cognitive Function of Rats with Aging Brain Facilitated by D-Galactose

  • Park, Dong-Sun (College of Veterinary Medicine, Chungbuk National University) ;
  • Lee, Sun-Hee (College of Veterinary Medicine, Chungbuk National University) ;
  • Choi, Young-Jin (College of Veterinary Medicine, Chungbuk National University) ;
  • Bae, Dae-Kwon (College of Veterinary Medicine, Chungbuk National University) ;
  • Yang, Yun-Hui (College of Veterinary Medicine, Chungbuk National University) ;
  • Yang, Go-Eun (College of Veterinary Medicine, Chungbuk National University) ;
  • Kim, Tae-Kyun (College of Veterinary Medicine, Chungbuk National University) ;
  • Yeon, Sung-Ho (Department of Food Science and Technology, Chungbuk National University) ;
  • Hwang, Seock-Yeon (Department of Biomedical Laboratory Science, Daejeon University) ;
  • Joo, Seong-Soo (Division of Marine Molecular Biotechnology, Gangneung-Wonju National University) ;
  • Kim, Yun-Bae (College of Veterinary Medicine, Chungbuk National University)
  • Received : 2010.12.02
  • Accepted : 2011.01.25
  • Published : 2011.04.30

Abstract

In order to develop silk peptide (SP) preparations possessing cognition-enhancing effect, several candidates were screened through in vitro assays, and their effectiveness was investigated in facilitated brain aging model rats. Incubation of brain acetyl-cholinesterase with SP-PN (1-1,000 ${\mu}g/ml$) led to inhibition of the enzyme activity up to 35%, in contrast to a negligible effect of SP-NN. The expression of choline acetyltransferase (ChAT) mRNA of neural stem cells expressing ChAT gene (F3.ChAT) was increased by 24-hour treatment with 10 and 100 ${\mu}g/ml$ SP-NN (1.35 and 2.20 folds) and SP-PN (2.40 and 1.34 folds). Four-week subcutaneous injections with D-galactose (150 mg/kg) increased activated hippocampal astrocytes to 1.7 folds (a marker of brain injury and aging), decreased acetylcholine concentration in cerebrospinal fluid by 45-50%, and thereby impaired learning and memory function in passive avoidance and water-maze performances. Oral treatment with SP preparations (50 or 300 mg/kg) for 5 weeks from 1 week prior to D-galactose injection exerted recovering activities on acetylcholine depletion and brain injury/aging as well as cognitive deficit induced by D-galactose. The results indicate that SP preparations restore cognitive functions of facilitated brain aging model rats by increasing the release of acetylcholine, in addition to neuroprotective activity.

Keywords

References

  1. Abe, E., Murai, S., Masuda, Y., Saito, H. and Itoh, T. (1993) ${\alpha}$-Sialyl cholesterol reverses AF64A-induced defi cit in passive avoidance response and depletion of hippocampal acetylcholine in mice. Br. J. Pharmacol. 108, 387-392. https://doi.org/10.1111/j.1476-5381.1993.tb12814.x
  2. Barnes, C. A. (1979) Memory defi cits associated with senescence: a neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol. 93, 74-104. https://doi.org/10.1037/h0077579
  3. Bessho, T., Takashina, K., Eguchi, J., Komatsu, T. and Saito, K. (2008) MKC-231, a choline-uptake enhancer: (1) long-lasting cognitive improvement after repeated administration in AF64A-treated rats. J. Neural Transm. 115, 1019-1025. https://doi.org/10.1007/s00702-008-0053-4
  4. Chen, C., Lang, S., Zuo, P., Yang, N. and Wang, X. (2008) Treatment with dehydroepiandrosterone increases peripheral benzodiazepine receptors of mitochondria from cerebral cortex in $_{D}$-galactose-induced aged rats. Basic Clin. Pharmacol. Toxicol. 103, 493-501. https://doi.org/10.1111/j.1742-7843.2008.00288.x
  5. Coyle, J. T., Price, D. L. and DeLong, M.R. (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219, 1184-1190. https://doi.org/10.1126/science.6338589
  6. Cui, X., Zuo, P., Zhang, Q., Li, X., Hu, Y., Long, J., Packer, L. and Liu, J. (2006) Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid. J. Neurosci. Res. 83, 1584-1590. https://doi.org/10.1002/jnr.20845
  7. Egashira, N., Yuzurihara, M., Hattori, N., Sakakibara, I. and Ishige, A. (2003) Ninjin-yoei-to (Ren-Shen-Yang-Rong-Tang) and Polygalae radix improves scopolamine-induced impairment of passive avoidance response in mice. Phytomedicine 10, 467-473. https://doi.org/10.1078/094471103322331403
  8. Ellman, G. L., Courtney, K. D., Andres, V. Jr. and Featherstone, R. M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  9. Floyd, R. and Hensley, K. (2002) Oxidative stress in brain aging implications for therapeutics of neurodegenerative diseases. Neurobiol. Aging 23, 795-807. https://doi.org/10.1016/S0197-4580(02)00019-2
  10. Hsieh, H., Wua, W. and Hu, M. (2009) Soy isofl avones attenuate oxidative stress and improve parameters related to aging and Alzheimer’s disease in C57BL/6J mice treated with D-galactose. Food Chem. Toxicol. 47, 625-632. https://doi.org/10.1016/j.fct.2008.12.026
  11. Kang, Y. K., Nam, S. H., Sohn, H. O. and Lee, D. W. (2006) Inhibitory effect of silkworm-extract (SE) on monoamine oxidase activity in vitro and in vivo. Entomol. Res. 35, 189-193. https://doi.org/10.1111/j.1748-5967.2005.tb00158.x
  12. Kang, Y. K., Oh, H. S., Cho, Y. H., Kim, Y. J. Han, Y. G. and Nam, S. H. (2010) Effects of a silkworm extract on dopamine and monoamine oxidase-B activity in an MPTP-induced Parkinson’s disease model. Lab. Anim. Res. 26, 287-292. https://doi.org/10.5625/lar.2010.26.3.287
  13. Kaplan, L. A. and Pesce, A. J. (1996) Clinical chemistry. Mosby, St. Louis.
  14. Karakida, F., Ikeya, Y., Tsunakawa, M., Yamaguchi, T., Ikarashi, Y., Takeda, S. and Aburada, M. (2007) Cerebral protective and cognition-improving effects of sinapic acid in rodents. Biol. Pharm. Bull. 30, 514-519. https://doi.org/10.1248/bpb.30.514
  15. Kasa, P., Rakonczay, Z. and Gulya, K. (1997) The cholinergic system in Alzheimer's disease. Prog. Neurobiol. 52, 511-535. https://doi.org/10.1016/S0301-0082(97)00028-2
  16. Kato, N., Sato, S., Yamanaka, A., Yamada, H., Fuwa, N. and Nomura, M. (1998) Silk protein, sericin, inhibits lipid peoxidation and tyrosinase activity. Biosci. Biotechnol. Biochem. 62, 145-147. https://doi.org/10.1271/bbb.62.145
  17. Kim, K., Park, S., Yoo, H. K., Lee, J. Y., Jung, H. Y., Kim, D. H., Lee, H. J., Kim, J. Y., Youn, Y. C., Marshall, M. R., Kim, S. S. and Jeong, Y. (2009) Brain factor-7 extracted from Bombyx mori enhances cognition and attention in normal children. J. Med. Food 12, 643-648. https://doi.org/10.1089/jmf.2008.1236
  18. Kim, S. U. (2004) Human neural stem cells genetically modifi ed for brain repair in neurological disorders. Neuropathology 24, 159-171. https://doi.org/10.1111/j.1440-1789.2004.00552.x
  19. Kim, T, M., Ryu, J. M., Seo, I. K., Lee, K. M., Yeon, S., Kang, S., Hwang, S. Y. and Kim, Y. B. (2008) Effects of red ginseng powder and silk peptide on hypercholesterolemia and atherosclerosis in rabbits. Lab. Anim. Res. 24, 67-75.
  20. Kim, Y. B., Hur, G. H., Shin, S., Sok, D. E., Kang, J. K. and Lee, Y. S. (1999) Organophosphate-induced brain injuries: delayed apoptosis mediated by nitric oxide. Environ. Toxicol. Pharmacol. 7, 147-152. https://doi.org/10.1016/S1382-6689(99)00006-X
  21. Kim, Y. B., Shin, S., Sok, D. E. and Kang, J. K. (1998) Effectiveness of procyclidine in combination with carbamate prophylactics against diisopropylfl uorophosphate poisoning. Environ. Toxicol. Pharmacol. 5, 43-49. https://doi.org/10.1016/S1382-6689(97)10005-9
  22. Kumar, A., Prakasj, A. and Dogra, S. (2010) Naringin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by D-galactose in mice. Food Chem. Toxicol. 48, 626-632. https://doi.org/10.1016/j.fct.2009.11.043
  23. Lee, H. J., Kim, K. S., Kim, E. J., Choi, H. B., Lee, K. H., Park, I. H., Ko, Y., Jeong, S. W. and Kim, S. U. (2007a) Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model. Stem Cells 25, 1204-1212. https://doi.org/10.1634/stemcells.2006-0409
  24. Lee, J. Y., Lee, S. H., Sung, J. J., Kim, E. T., Cho, H. J., Kim, K. H., Kang, Y. K., Kim, S. S., Kwon, O. S. and Lee, W. B. (2005) The effect of BF-7 on the ischemia-induced learning and memory defi cits. Korean J. Anat. 38, 181-188.
  25. Lee, K. G., Yeo, J. H., Lee, Y. W., Kweon, H. Y., Woo, S. O., Han, S. M. and Kim, J. H. (2003) Studies on industrial utilization of silk protein. Korean J. Food Ind. 36, 25-37.
  26. Lee, S. H., Cho, H. N., Hyun, C. K. and Jew, S. S. (2002) Physiology functional characteristic of silk peptide. Food Sci. Ind. 35, 57-62.
  27. Lee, Y., Park, M., Choi, J., Kim, J., Nam, M. and Jeong, Y. (2007b) Effects of silk protein hydrolysates on blood glucose level, serum insulin and leptin secretion in OLEFT rats. J. Korean Soc. Food Sci. Nutr. 36, 703-707. https://doi.org/10.3746/jkfn.2007.36.6.703
  28. Lei, M., Hua, X., Xiao, M., Ding, J., Han, Q. and Hu, G. (2008) Impairments of astrocytes are involved in the D-galactose-induced brain aging. Biochem. Biophys. Res. Commun. 369, 1082-1087. https://doi.org/10.1016/j.bbrc.2008.02.151
  29. Lu, J., Zheng, Y. L., Wu, D. M., Luo, L., Sun, D. X. and Shan, Q. (2007) Ursolic acid ameliorates cognition defi cits and attenuates oxidative damage in the brain of senescent mice induced by $_{D}-galactose$. Biochem. Pharmacol. 74, 1078-1090. https://doi.org/10.1016/j.bcp.2007.07.007
  30. Matsuo, A., Bellier, J. P., Hisano, T., Aimi, Y., Yasuhara, O., Tooyama, I., Saito, N. and Kimura, H. (2005) Rat choline acetyltransferase of the peripheral type differs from that of the common type in intracellular translocation. Neurochem. Int. 46, 423-433. https://doi.org/10.1016/j.neuint.2004.11.006
  31. Miquel, J., Economos, A. C., Fleming, J. and Johnson, J. E. Jr. (1980) Mitochondrial role in cell aging. Exp. Gerontol. 15, 575-591. https://doi.org/10.1016/0531-5565(80)90010-8
  32. Musial, A., Bajda, M. and Malawska, B. (2007) Recent developments in cholinesterases inhibitors for Alzheimer’s disease treatment. Curr. Med. Chem. 14, 2654-2679. https://doi.org/10.2174/092986707782023217
  33. Park, D., Kim, T. K., Yeon, S., Lee, S. H., Choi, Y. J., Bae, D. K., Yang, Y. H., Yang, G., Joo, S. S., Lim, W. T., Lee, J. Y., Lee, J., Jeong, H. S., Hwang, S. Y. and Kim, Y. B. (2010). Tyrosine-fortifi ed silk amino acids improve physical function of Parkinson’s disease rats. Food Sci. Biotechnol. 20, 79-84. https://doi.org/10.1007/s10068-011-0011-z
  34. Park, K. J., Hong, S. E., Do, M. S. and Hyun, C. K. (2002) Stimulation of insulin secretion by silk fi broin hydrolysate in streptozotocininduced diabetic rat and db/db mice. Korean J. Pharmacogn. 33, 21-28.
  35. Reddy, P. H. (2007) Mitochondrial dysfunction in aging and Alzheimer’s disease: strategies to protect neurons. Antioxid. Redox Signal. 9, 1647-1658. https://doi.org/10.1089/ars.2007.1754
  36. Rosenzweig, E. S. and Barnes, C. A. (2003) Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog. Neurobiol. 69, 143-179. https://doi.org/10.1016/S0301-0082(02)00126-0
  37. Shin, S., Park, D., Yeon, S., Jeon, J. H., Kim, T. K., Joo, S. S., Lim, W. T., Lee, J. Y. and Kim, Y. B. (2009a) Stamina-enhancing effects of silk amino acid preparations in mice. Lab. Anim. Res. 25, 127-134.
  38. Shin, S., Yeon, S., Park, D., Oh, J., Kang, H., Kim, S., Joo, S. S., Lim, W. T., Lee, J. Y., Choi, K. C., Kim, K. Y., Kim, S. U., Kim, J. C. and Kim, Y. B. (2009b). Silk amino acids improve physical stamina and male reproductive function of mice. Biol. Pharm. Bull. 33, 273-278.
  39. Song, X., Bao, M., Li, D. and Li, Y. (1999) Advanced glycation in $_{D}-galactose$ induced mouse aging model. Mech. Ageing Dev. 108, 239-251. https://doi.org/10.1016/S0047-6374(99)00022-6
  40. Takashina, K., Bessho, T., Mori, R., Eguchi, J. and Saito, K. (2008) MKC-231, a choline uptake enhancer: (2) Effect on synthesis and release of acetylcholine in AF64A-treated rats. J. Neural Transm. 115, 1027-1035. https://doi.org/10.1007/s00702-008-0048-1
  41. Terry, A. V. and Buccafusco, J. J. (2003) The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive defi cits: recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther. 306, 821-827. https://doi.org/10.1124/jpet.102.041616
  42. Terry, R. D. and Davies, P. (1980) Dementia of the Alzheimer type. Annu. Rev. Neurosci. 3, 77-95. https://doi.org/10.1146/annurev.ne.03.030180.000453
  43. Tsai, K. J., Tsai, Y. C. and Shen, C. K. J. (2007) G-CSF rescues the memory impairment of animal models of Alzheimer's disease. J. Exp. Med. 204, 1273-1280. https://doi.org/10.1084/jem.20062481
  44. Wang, Q., Iwasaki, K., Suzuki, T., Arai, H,, Ikarashi, Y., Yabe, T., Toriizuka, K., Hanawa, T., Yamada, H. and Sasaki, H. (2000) Potentiation of brain acetylcholine neurons by Kami-Untan-To (KUT) in aged mice: implications for a possible antidementia drug. Phytomedicine 7, 253-258. https://doi.org/10.1016/S0944-7113(00)80041-0
  45. Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T. and Delon, M. R. (1982) Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 215, 1237-1239. https://doi.org/10.1126/science.7058341
  46. Yamazaki, N., Kato, K., Kurihara, E. and Nagaoka, A. (1991) Cholinergic drugs reverse AF64A-induced impairment of passive avoidance learning in rats. Psychopharmacology (Berl.) 103, 215-222. https://doi.org/10.1007/BF02244206
  47. Zeevalk, G. D., Bernard, L. P., Song, C., Gluck, M. and Ehrhart, J. (2005) Mitochondrial inhibition and oxidative stress: reciprocating players in neurodegeneration. Antioxid. Redox Signal. 7, 1117-1139. https://doi.org/10.1089/ars.2005.7.1117
  48. Zhaorigetu, S., Yanaka, N., Sasaki, M., Watanabe, H. and Kato, N. (2003) Silk protein, sericin, suppresses DMBA-TPA-induced mouse skin tumorigenesis by reducing oxidative stress, infl ammatory responses and endogenous tumor promoter TNF-alpha. Oncol. Rep. 10, 536-543.

Cited by

  1. Effects of Silk Peptides Administration on Fat Utilization Over a Whole Day in Mice vol.20, pp.4, 2016, https://doi.org/10.20463/jenb.2016.0055
  2. Neuroprotective Effects of a Butanol Fraction of Rosa hybrida Petals in a Middle Cerebral Artery Occlusion Model vol.21, pp.6, 2013, https://doi.org/10.4062/biomolther.2013.067
  3. Silk and silkworm pupa peptides suppress adipogenesis in preadipocytes and fat accumulation in rats fed a high-fat diet vol.51, pp.8, 2012, https://doi.org/10.1007/s00394-011-0280-6
  4. Nutrition Supplements to Stimulate Lipolysis: A Review in Relation to Endurance Exercise Capacity vol.62, pp.3, 2016, https://doi.org/10.3177/jnsv.62.141
  5. Improvement of cognitive function and physical activity of aging mice by human neural stem cells over-expressing choline acetyltransferase vol.34, pp.11, 2013, https://doi.org/10.1016/j.neurobiolaging.2013.04.026
  6. A silk peptide fraction restores cognitive function in AF64A-induced Alzheimer disease model rats by increasing expression of choline acetyltransferase gene vol.314, 2017, https://doi.org/10.1016/j.taap.2016.11.008
  7. Cereboost™, an American ginseng extract, improves cognitive function via up-regulation of choline acetyltransferase expression and neuroprotection vol.78, 2016, https://doi.org/10.1016/j.yrtph.2016.04.006
  8. Oral Administration of Silk Peptide Enhances the Maturation and Cytolytic Activity of Natural Killer Cells vol.18, pp.5, 2018, https://doi.org/10.4110/in.2018.18.e37
  9. Silk Peptide Intake Increases Fat Oxidation at Rest in Exercised Mice vol.59, pp.3, 2011, https://doi.org/10.3177/jnsv.59.250
  10. Effects of Snake Venom Pharmacopuncture on a Mouse model of Cerebral Infarction vol.36, pp.3, 2011, https://doi.org/10.13045/jar.2019.00073
  11. Identification and applications of neuroactive silk proteins: a narrative review vol.17, pp.3, 2011, https://doi.org/10.32725/jab.2019.012