DOI QR코드

DOI QR Code

The Role of Jak/STAT Pathways in Osteoclast Differentiation

  • Lee, Young-Kyun (Department of Cell and Developmental Biology, School of Dentistry, Seoul National University) ;
  • Kim, Hong-Hee (Department of Cell and Developmental Biology, School of Dentistry, Seoul National University)
  • Received : 2011.04.07
  • Accepted : 2011.04.18
  • Published : 2011.04.30

Abstract

Osteoclasts are bone-resorbing cells of monocyte/macrophage origin and are culprits of bone destruction associated with osteoporosis, rheumatoid arthritis, and cancer bone metastasis. Recent advances in osteoclast biology revealed central roles of various cytokines in regulating osteoclastogenesis both in vitro and in vivo. However, exact underlying mechanisms including signaling pathways downstream of receptor ligation are still under pursuit. In the present review, the role of Jak/STAT proteins and their regulators will be discussed in connection with osteoclastogenesis, since growing evidence indicates that a number of cytokines and growth factors utilizing Jak/STAT signaling pathways affect osteoclastogenesis. A better understanding on the role of Jak/STAT pathways in osteoclast differentiation will not only strengthen our knowledge on osteoclast biology but also provide invaluable insights into the development of anti-resorptive strategies for treating bone-lytic diseases.

Keywords

References

  1. Abu-Amer, Y. (2001) IL-4 abrogates osteoclastogenesis through STAT6-dependent inhibition of NF-kappaB. J. Clin. Invest. 107, 1375-1385. https://doi.org/10.1172/JCI10530
  2. Ahlen, J., Andersson, S., Mukohyama, H., Roth, C., Backman, A., Conaway, H. H. and Lerner, U. H. (2002) Characterization of the bone-resorptive effect of interleukin-11 in cultured mouse calvarial bones. Bone 31, 242-251. https://doi.org/10.1016/S8756-3282(02)00784-6
  3. Alexander, W. S. (2002) Suppressors of cytokine signalling (SOCS) in the immune system. Nat. Rev. Immunol. 2, 410-416.
  4. Arai, F., Miyamoto, T., Ohneda, O., Inada, T., Sudo, T., Brasel, K., Miyata, T., Anderson, D. M. and Suda, T. (1999) Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J. Exp. Med. 190, 1741-1754. https://doi.org/10.1084/jem.190.12.1741
  5. Arora, T., Liu, B., He, H., Kim, J., Murphy, T. L., Murphy, K. M., Modlin, R. L. and Shuai, K. (2003) PIASx is a transcriptional co-repressor of signal transducer and activator of transcription 4. J. Biol. Chem. 278, 21327-21330. https://doi.org/10.1074/jbc.C300119200
  6. Boyle, W. J., Simonet, W. S. and Lacey, D. L. (2003) Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
  7. Chung, C. D., Liao, J., Liu, B., Rao, X., Jay, P., Berta, P. and Shuai, K. (1997) Specific inhibition of Stat3 signal transduction by PIAS3. Science 278, 1803-1805. https://doi.org/10.1126/science.278.5344.1803
  8. Darnell, J. E. Jr. (1997) STATs and gene regulation. Science 277, 1630-1635. https://doi.org/10.1126/science.277.5332.1630
  9. Djaafar, S., Pierroz, D. D., Chicheportiche, R., Zheng, X. X., Ferrari, S. L. and Ferrari-Lacraz, S. (2010) Inhibition of T cell-dependent and RANKL-dependent osteoclastogenic processes associated with high levels of bone mass in interleukin-15 receptor-defi cient mice. Arthritis. Rheum. 62, 3300-3310. https://doi.org/10.1002/art.27645
  10. Duplomb, L., Baud'huin, M., Charrier, C., Berreur, M., Trichet, V., Blanchard, F. and Heymann, D. (2008) Interleukin-6 inhibits receptor activator of nuclear factor kappaB ligand-induced osteoclastogenesis by diverting cells into the macrophage lineage: key role of Serine727 phosphorylation of signal transducer and activator of transcription 3. Endocrinology 149, 3688-3697. https://doi.org/10.1210/en.2007-1719
  11. Favus, M. J. (2010) Bisphosphonates for osteoporosis. N. Engl. J. Med. 363, 2027-2035. https://doi.org/10.1056/NEJMct1004903
  12. Fox, S. W., Haque, S. J., Lovibond, A. C. and Chambers, T. J. (2003) The possible role of TGF-beta-induced suppressors of cytokine signaling expression in osteoclast/macrophage lineage commitment in vitro. J. Immunol. 170, 3679-3687. https://doi.org/10.4049/jimmunol.170.7.3679
  13. Frith, J. C., Monkkonen, J., Blackburn, G. M., Russell, R. G. and Rogers, M. J. (1997) Clodronate and liposome-encapsulated clodronate are metabolized to a toxic ATP analog, adenosine 5'-(beta, gamma-dichloromethylene) triphosphate, by mammalian cells in vitro. J. Bone Miner Res. 12, 1358-1367. https://doi.org/10.1359/jbmr.1997.12.9.1358
  14. Grigoriadis, A. E., Wang, Z. Q., Cecchini, M. G., Hofstetter, W., Felix, R., Fleisch, H. A. and Wagner, E. F. (1994) c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266, 443-448. https://doi.org/10.1126/science.7939685
  15. Gupta, N., Barhanpurkar, A. P., Tomar, G. B., Srivastava, R. K., Kour, S., Pote, S. T., Mishra, G. C. and Wani, M. R. (2010) IL-3 inhibits human osteoclastogenesis and bone resorption through downregulation of c-Fms and diverts the cells to dendritic cell lineage. J. Immunol. 185, 2261-2272. https://doi.org/10.4049/jimmunol.1000015
  16. Hayashi, T., Kaneda, T., Toyama, Y., Kumegawa, M. and Hakeda, Y. (2002) Regulation of receptor activator of NF-kappa B ligand-induced osteoclastogenesis by endogenous interferon-beta (INF-beta) and suppressors of cytokine signaling (SOCS) The possible counteracting role of SOCSs- in IFN-beta-inhibited osteoclast formation. J. Biol. Chem. 277, 27880-27886. https://doi.org/10.1074/jbc.M203836200
  17. Hikata, T., Takaishi, H., Takito, J., Hakozaki, A., Furukawa, M., Uchikawa, S., Kimura, T., Okada, Y., Matsumoto, M., Yoshimura, A., Nishimura, R., Reddy, S. V., Asahara, H. and Toyama, Y. (2009) PIAS3 negatively regulates RANKL-mediated osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblasts. Blood 113, 2202-2212. https://doi.org/10.1182/blood-2008-06-162594
  18. Hilton, D. J. (1999) Negative regulators of cytokine signal transduction. Cell Mol. Life Sci. 55, 1568-1577. https://doi.org/10.1007/s000180050396
  19. Hirayama, T., Dai, S., Abbas, S., Yamanaka, Y. and Abu-Amer, Y. (2005) Inhibition of infl ammatory bone erosion by constitutively active STAT-6 through blockade of JNK and NF-kappaB activation. Arthritis. Rheum. 52, 2719-2729. https://doi.org/10.1002/art.21286
  20. Hong, M. H., Williams, H., Jin, C. H. and Pike, J. W. (2000) The inhibitory effect of interleukin-10 on mouse osteoclast formation involves novel tyrosine-phosphorylated proteins. J. Bone Miner Res. 15, 911-918.
  21. Horwood, N. J., Elliott, J., Martin, T. J. and Gillespie, M. T. (2001) IL-12 alone and in synergy with IL-18 inhibits osteoclast formation in vitro. J. Immunol. 166, 4915-4921. https://doi.org/10.4049/jimmunol.166.8.4915
  22. Hu, R., Sharma, S. M., Bronisz, A., Srinivasan, R., Sankar, U. and Ostrowski, M. C. (2007) Eos, MITF, and PU.1 recruit corepressors to osteoclast-specific genes in committed myeloid progenitors. Mol. Cell Biol. 27, 4018-4027. https://doi.org/10.1128/MCB.01839-06
  23. Huang, W., O'Keefe, R. J. and Schwarz, E. M. (2003) Exposure to receptor-activator of NFkappaB ligand renders pre-osteoclasts resistant to IFN-gamma by inducing terminal differentiation. Arthritis. Res. Ther. 5, R49-59. https://doi.org/10.1186/ar612
  24. Iotsova, V., Caamano, J., Loy, J., Yang, Y., Lewin, A. and Bravo, R. (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat. Med. 3, 1285-1289. https://doi.org/10.1038/nm1197-1285
  25. Jacquin, C., Gran, D. E., Lee, S. K., Lorenzo, J. A. and Aguila, H. L. (2006) Identification of multiple osteoclast precursor populations in murine bone marrow. J. Bone Miner Res. 21, 67-77.
  26. Ju, J. H., Cho, M. L., Moon, Y. M., Oh, H. J., Park, J. S., Jhun, J. Y., Min, S. Y., Cho, Y. G., Park, K. S., Yoon, C. H., Min, J. K., Park, S. H., Sung, Y. C. and Kim, H. Y. (2008) IL-23 induces receptor activa tor of NF-kappaB ligand expression on CD4+ T cells and promotes osteoclastogenesis in an autoimmune arthritis model. J. Immunol. 181, 1507-1518. https://doi.org/10.4049/jimmunol.181.2.1507
  27. Khapli, S. M., Mangashetti, L. S., Yogesha, S. D. and Wani, M. R. (2003) IL-3 acts directly on osteoclast precursors and irreversibly inhibits receptor activator of NF-kappa B ligand-induced osteoclast differentiation by diverting the cells to macrophage lineage. J. Immunol. 171, 142-151. https://doi.org/10.4049/jimmunol.171.1.142
  28. Kim, K., Lee, J., Kim, J. H., Jin, H. M., Zhou, B., Lee, S. Y. and Kim, N. (2007) Protein inhibitor of activated STAT 3 modulates osteoclastogenesis by down-regulation of NFATc1 and osteoclast-associated receptor. J. Immunol. 178, 5588-5594. https://doi.org/10.4049/jimmunol.178.9.5588
  29. Kim, K., Lee, S. H., Kim J. H., Choi, Y. and Kim, N. (2008) NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol. Endocrinol. 22, 176-185. https://doi.org/10.1210/me.2007-0237
  30. Kim, S., Koga, T., Isobe, M., Kern, B. E., Yokochi, T., Chin, Y. E., Karsenty, G., Taniguchi, T. and Takayanagi, H. (2003) Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes. Dev. 17, 1979-1991. https://doi.org/10.1101/gad.1119303
  31. Kleinberger-Doron, N., Shelah, N., Capone, R., Gazit, A. and Levitzki, A. (1998) Inhibition of Cdk2 activation by selected tyrphostins causes cell cycle arrest at late G1 and S phase. Exp. Cell Res. 241, 340-351. https://doi.org/10.1006/excr.1998.4061
  32. Kong, Y. Y., Yoshida, H., Sarosi, I., Tan, H. L., Timms, E., Capparelli, C., Morony, S., Oliveira-dos-Santos, A. J., Van, G., Itie, A., Khoo, W., Wakeham, A., Dunstan, C. R., Lacey, D. L., Mak, T. W., Boyle, W. J. and Penninger, J. M. (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315-323. https://doi.org/10.1038/16852
  33. Kwak, H. B., Sun, H. M., Ha, H., Lee, J. H., Kim, H. N. and Lee, Z. H. (2008) AG490, a Jak2-specific inhibitor, induces osteoclast survival by activating the Akt and ERK signaling pathways. Mol. Cells 26, 436-442.
  34. Lankford, C. S. and Frucht, D. M. (2003) A unique role for IL-23 in promoting cellular immunity. J. Leukoc. Biol. 73, 49-56. https://doi.org/10.1189/jlb.0602326
  35. Lee, S. H., Rho, J., Jeong, D., Sul, J. Y., Kim, T., Kim, N., Kang, J. S., Miyamoto, T., Suda, T., Lee, S. K., Pignolo, R. J., Koczon-Jaremko, B., Lorenzo, J. and Choi, Y. (2006) v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat. Med. 12, 1403-1409.
  36. Lee, S. K., Kalinowski, J. F., Jastrzebski, S. L., Puddington, L. and Lorenzo, J. A. (2003) Interleukin-7 is a direct inhibitor of in vitro osteoclastogenesis. Endocrinology 144, 3524-3531. https://doi.org/10.1210/en.2002-221057
  37. Lee, Y., Hyung, S. W., Jung, H. J., Kim, H. J., Staerk, J., Constantinescu, S. N., Chang, E. J., Lee, Z. H., Lee, S. W. and Kim, H. H. (2008) The ubiquitin-mediated degradation of Jak1 modulates osteoclastogenesis by limiting interferon-{beta}-induced inhibitory signaling. Blood 111, 885-893. https://doi.org/10.1182/blood-2007-03-082941
  38. Lee, Z. H. and Kim, H. H. (2003) Signal transduction by receptor activator of nuclear factor kappa B in osteoclasts. Biochem. Biophys. Res. Commun. 305, 211-214. https://doi.org/10.1016/S0006-291X(03)00695-8
  39. Liu, B., Gross, M., ten Hoeve, J. and Shuai, K. (2001) A transcriptional corepressor of Stat1 with an essential LXXLL signature motif. Proc. Natl. Acad. Sci. USA 98, 3203-3207. https://doi.org/10.1073/pnas.051489598
  40. Liu, B., Liao, J., Rao, X., Kushner, S. A., Chung, C. D., Chang, D. D. and Shuai, K. (1998) Inhibition of Stat1-mediated gene activation by PIAS1. Proc. Natl. Acad. Sci. USA 95, 10626-10631. https://doi.org/10.1073/pnas.95.18.10626
  41. Mangashetti, L. S., Khapli, S. M. and Wani, M. R. (2005) IL-4 inhibits bone-resorbing activity of mature osteoclasts by affecting NF-kappaB and Ca2+ signaling. J. Immunol. 175, 917-925. https://doi.org/10.4049/jimmunol.175.2.917
  42. Masarachia, P., Weinreb, M., Balena, R. and Rodan, G. A. (1996) Comparison of the distribution of 3H-alendronate and 3H-etidronate in rat and mouse bones. Bone 19, 281-290. https://doi.org/10.1016/8756-3282(96)00182-2
  43. Mizoguchi, T., Muto, A., Udagawa, N., Arai, A., Yamashita, T., Hosoya, A., Ninomiya, T., Nakamura, H., Yamamoto, Y., Kinugawa, S., Nakamura, M., Nakamichi, Y., Kobayashi, Y., Nagasawa, S., Oda, K., Tanaka, H., Tagaya, M., Penninger, J. M., Ito, M. and Takahashi, N. (2009) Identification of cell cycle-arrested quiescent osteoclast precursors in vivo. J. Cell Biol. 184, 541-554. https://doi.org/10.1083/jcb.200806139
  44. Mohamed, S. G., Sugiyama, E., Shinoda, K., Taki, H., Hounoki, H., Abdel-Aziz, H. O., Maruyama, M., Kobayashi, M., Ogawa, H. and Miyahara, T. (2007) Interleukin-10 inhibits RANKL-mediated expression of NFATc1 in part via suppression of c-Fos and c-Jun in RAW264.7 cells and mouse bone marrow cells. Bone 41, 592-602. https://doi.org/10.1016/j.bone.2007.05.016
  45. Moreno, J. L., Kaczmarek, M., Keegan, A. D. and Tondravi, M. (2003) IL-4 suppresses osteoclast development and mature osteoclast function by a STAT6-dependent mechanism: irreversible inhibition of the differentiation program activated by RANKL. Blood 102, 1078-1086. https://doi.org/10.1182/blood-2002-11-3437
  46. Murray, P. J. (2007) The JAK-STAT signaling pathway: input and output integration. J. Immunol. 178, 2623-2629. https://doi.org/10.4049/jimmunol.178.5.2623
  47. Nagata, N., Kitaura, H., Yoshida, N. and Nakayama, K. (2003) Inhibition of RANKL-induced osteoclast formation in mouse bone marrow cells by IL-12: involvement of IFN-gamma possibly induced from non-T cell population. Bone 33, 721-732. https://doi.org/10.1016/S8756-3282(03)00213-8
  48. O'Brien, C. A., Gubrij, I., Lin, S. C., Saylors, R. L. and Manolagas, S. C. (1999) STAT3 activation in stromal/osteoblastic cells is required for induction of the receptor activator of NF-kappaB ligand and stimulation of osteoclastogenesis by gp130-utilizing cytokines or interleukin-1 but not 1,25-dihydroxyvitamin D3 or parathyroid hormone. J. Biol. Chem. 274, 19301-19308. https://doi.org/10.1074/jbc.274.27.19301
  49. Ogata, Y., Kukita, A., Kukita, T., Komine, M., Miyahara, A., Miyazaki, S. and Kohashi, O. (1999) A novel role of IL-15 in the development of osteoclasts: inability to replace its activity with IL-2. J. Immunol. 162, 2754-2760.
  50. Ohishi, M., Matsumura, Y., Aki, D., Mashima, R., Taniguchi, K., Kobayashi, T., Kukita, T., Iwamoto, Y. and Yoshimura, A. (2005) Suppressors of cytokine signaling-1 and -3 regulate osteoclastogenesis in the presence of infl ammatory cytokines. J. Immunol. 174, 3024-3031. https://doi.org/10.4049/jimmunol.174.5.3024
  51. Osherov, N., Gazit, A., Gilon, C. and Levitzki, A. (1993) Selective inhibition of the epidermal growth factor and HER2/neu receptors by tyrphostins. J. Biol. Chem. 268, 11134-11142.
  52. Palmqvist, P., Lundberg, P., Persson, E., Johansson, A., Lundgren, I., Lie, A., Conaway, H. H. and Lerner, U. H. (2006) Inhibition of hormone and cytokine-stimulated osteoclastogenesis and bone resorption by interleukin-4 and interleukin-13 is associated with increased osteoprotegerin and decreased RANKL and RANK in a STAT6-dependent pathway. J. Biol. Chem. 281, 2414-2429.
  53. Palmqvist, P., Persson, E., Conaway, H. H. and Lerner, U. H. (2002) IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-kappa B ligand, osteoprotegerin, and receptor activator of NF-kappa B in mouse calvariae. J. Immunol. 169, 3353-3362. https://doi.org/10.4049/jimmunol.169.6.3353
  54. Quinn, J. M., Sims, N. A., Saleh, H., Mirosa, D., Thompson, K., Bouralexis, S., Walker, E. C., Martin, T. J. and Gillespie, M. T. (2008) IL-23 inhibits osteoclastogenesis indirectly through lymphocytes and is required for the maintenance of bone mass in mice. J. Immunol. 181, 5720-5729. https://doi.org/10.4049/jimmunol.181.8.5720
  55. Rawlings, J. S., Rosler, K. M. and Harrison, D. A. (2004) The JAK/STAT signaling pathway. J. Cell Sci. 117, 1281-1283. https://doi.org/10.1242/jcs.00963
  56. Richards, C. D., Langdon, C., Deschamps, P., Pennica, D. and Shaughnessy, S. G. (2000) Stimulation of osteoclast differentiation in vitro by mouse oncostatin M, leukaemia inhibitory factor, cardiotrophin-1 and interleukin 6: synergy with dexamethasone. Cytokine 12, 613-621. https://doi.org/10.1006/cyto.1999.0635
  57. Sato, M., Grasser, W., Endo, N., Akins, R., Simmons, H., Thompson, D. D., Golub, E. and Rodan, G. A. (1991) Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. J. Clin. Invest. 88, 2095-2105. https://doi.org/10.1172/JCI115539
  58. Shuai, K. (2000) Modulation of STAT signaling by STAT-interacting proteins. Oncogene 19, 2638-2644. https://doi.org/10.1038/sj.onc.1203522
  59. Shuai, K. and Liu, B. (2003) Regulation of JAK-STAT signalling in the immune system. Nat. Rev. Immunol. 3, 900-911. https://doi.org/10.1038/nri1226
  60. Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. and Schreiber, R. D. (1998) How cells respond to interferons. Annu. Rev. Biochem. 67, 227-264. https://doi.org/10.1146/annurev.biochem.67.1.227
  61. Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., Wagner, E. F., Mak, T. W., Kodama, T. and Taniguchi, T. (2002a) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889-901. https://doi.org/10.1016/S1534-5807(02)00369-6
  62. Takayanagi, H., Kim, S., Matsuo, K., Suzuki, H., Suzuki, T., Sato, K., Yokochi, T., Oda, H., Nakamura, K., Ida, N., Wagner, E. F. and Taniguchi, T. (2002b) RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 416, 744-749. https://doi.org/10.1038/416744a
  63. Takayanagi, H., Ogasawara, K., Hida, S., Chiba, T., Murata, S., Sato, K., Takaoka, A., Yokochi, T., Oda, H., Tanaka, K., Nakamura, K. and Taniguchi, T. (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408, 600-605. https://doi.org/10.1038/35046102
  64. Tamura, T., Udagawa, N., Takahashi, N., Miyaura, C., Tanaka, S., Yamada, Y., Koishihara, Y., Ohsugi, Y., Kumaki, K. and Taga, T. (1993) Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc. Natl. Acad. Sci. USA 90, 11924-11928. https://doi.org/10.1073/pnas.90.24.11924
  65. Teitelbaum, S. L. (2000) Bone resorption by osteoclasts. Science 289, 1504-1508. https://doi.org/10.1126/science.289.5484.1504
  66. Tondravi, M. M., McKercher, S. R., Anderson, K., Erdmann, J. M., Quiroz, M., Maki, R. and Teitelbaum, S. L. (1997) Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature 386, 81-84. https://doi.org/10.1038/386081a0
  67. van Beek, E. R., Cohen, L. H., Leroy, I. M., Ebetino, F. H., Lowik, C. W. and Papapoulos, S. E. (2003) Differentiating the mechanisms of antiresorptive action of nitrogen containing bisphosphonates. Bone 33, 805-811. https://doi.org/10.1016/j.bone.2003.07.007
  68. Walker, D. G. (1975) Spleen cells transmit osteopetrosis in mice. Science 190, 785-787. https://doi.org/10.1126/science.1198094
  69. Wei, S., Wang, M. W., Teitelbaum, S. L. and Ross, F. P. (2002) Interleukin-4 reversibly inhibits osteoclastogenesis via inhibition of NFkappa B and mitogen-activated protein kinase signaling. J. Biol. Chem. 277, 6622-6630. https://doi.org/10.1074/jbc.M104957200
  70. Weitzmann, M. N., Cenci, S., Rifas, L., Brown, C. and Pacifici, R. (2000) Interleukin-7 stimulates osteoclast formation by up-regulating the T-cell production of soluble osteoclastogenic cytokines. Blood 96, 1873-1878.
  71. Wu, H., Xu, G. and Li, Y. P. (2009) Atp6v0d2 is an essential component of the osteoclast-specific proton pump that mediates extracellular acidification in bone resorption. J. Bone Miner Res. 24, 871-885. https://doi.org/10.1359/jbmr.081239
  72. Yagi, M., Miyamoto, T., Sawatani, Y., Iwamoto, K., Hosogane, N., Fujita, N., Morita, K., Ninomiya, K., Suzuki, T., Miyamoto, K., Oike, Y., Takeya, M., Toyama, Y. and Suda, T. (2005) DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J. Exp. Med. 202, 345-351. https://doi.org/10.1084/jem.20050645
  73. Yamada, A., Takami, M., Kawawa, T., Yasuhara, R., Zhao, B., Mochizuki, A., Miyamoto, Y., Eto, T., Yasuda, H., Nakamichi, Y., Kim, N., Katagiri, T., Suda, T. and Kamijo, R. (2007) Interleukin-4 inhibition of osteoclast differentiation is stronger than that of interleukin-13 and they are equivalent for induction of osteoprotegerin production from osteoblasts. Immunology 120, 573-579. https://doi.org/10.1111/j.1365-2567.2006.02538.x
  74. Yasothan, U. and Kar, S. (2008) Osteoporosis: overview and pipeline. Nat. Rev. Drug Discov. 7, 725-726. https://doi.org/10.1038/nrd2620
  75. Yoshida, H., Hayashi, S., Kunisada, T., Ogawa, M., Nishikawa, S., Okamura, H., Sudo, T. and Shultz, L. D. (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442-444. https://doi.org/10.1038/345442a0
  76. Yoshitake, F., Itoh, S., Narita, H., Ishihara, K. and Ebisu, S. (2008) Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-kappaB signaling pathways. J. Biol. Chem. 283, 11535-11540. https://doi.org/10.1074/jbc.M607999200
  77. Zhang, Z., Welte, T., Troiano, N., Maher, S. E., Fu, X. Y. and Bothwell, A. L. (2005) Osteoporosis with increased osteoclastogenesis in hematopoietic cell-specific STAT3-defi cient mice. Biochem. Biophys. Res. Commun. 328, 800-807. https://doi.org/10.1016/j.bbrc.2005.01.019
  78. Zou, J., Presky, D. H., Wu, C. Y. and Gubler, U. (1997) Differential associations between the cytoplasmic regions of the interleukin-12 receptor subunits beta1 and beta2 and JAK kinases. J. Biol. Chem. 272, 6073-6077. https://doi.org/10.1074/jbc.272.9.6073

Cited by

  1. Fracture Healing Is Delayed in Immunodeficient NOD/scid‑IL2Rγcnull Mice vol.11, pp.2, 2016, https://doi.org/10.1371/journal.pone.0147465
  2. A Jak1/2 inhibitor, baricitinib, inhibits osteoclastogenesis by suppressing RANKL expression in osteoblasts in vitro vol.12, pp.7, 2017, https://doi.org/10.1371/journal.pone.0181126
  3. Cyclin-dependent kinase 8/19 inhibition suppresses osteoclastogenesis by downregulating RANK and promotes osteoblast mineralization and cancellous bone healing pp.00219541, 2019, https://doi.org/10.1002/jcp.28321
  4. JAK2-IGF1 axis in osteoclasts regulates postnatal growth in mice vol.6, pp.5, 2021, https://doi.org/10.1172/jci.insight.137045