DOI QR코드

DOI QR Code

Energy-balance assessment of shape memory alloy-based seismic isolation devices

  • Ozbulut, O.E. (Zachry Department of Civil Engineering, Texas A&M University) ;
  • Hurlebaus, S. (Zachry Department of Civil Engineering, Texas A&M University)
  • Received : 2011.01.21
  • Accepted : 2011.08.05
  • Published : 2011.10.25

Abstract

This study compares the performance of two smart isolation systems that utilize superelastic shape memory alloys (SMAs) for seismic protection of bridges using energy balance concepts. The first isolation system is a SMA/rubber-based isolation system (SRB-IS) and consists of a laminated rubber bearing that decouples the superstructure from the bridge piers and a SMA device that provides additional energy dissipation and re-centering capacity. The second isolation system, named as superelastic-friction base isolator (S-FBI), combines the superelastic SMAs with a flat steel-Teflon bearing rather than a laminated rubber bearing. Seismic energy equations of a bridge structure with SMA-based isolation systems are established by absolute and relative energy balance formulations. Nonlinear time history analyses are performed in order to assess the effectiveness of the isolation systems and to compare their performance. The program RSPMatch 2005 is employed to generate spectrum compatible ground motions that are used in time history analyses of the isolated bridge. Results indicate that SRB-IS produces higher seismic input energy, recoverable energy and base shears as compared to the S-FBI system. Also, it is shown that combining superelastic SMAs with a sliding bearing rather than rubber bearing significantly reduce the amount of the required SMA material.

Keywords

References

  1. Attanasi, G., Auricchio, F. and Fenves, G. (2009), "Feasibility assessment of an innovative isolation bearing system with shape memory alloys", J. Earthq. Eng., 13, 18-39. https://doi.org/10.1080/13632460902813216
  2. Austin, M.A. and Lin, W.J. (2004), "Energy balance assessment of base isolated structures", J. Eng. Mech. -ASCE., 130(3), 347-358. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:3(347)
  3. Bruneau, M. (1998), "Performance of steel bridges during the 1995 Hyogoken-Nanbu (Kobe, Japan) earthquakea North American perspective", Eng. Struct., 20(12), 1063-1078. https://doi.org/10.1016/S0141-0296(97)00203-4
  4. Carreras, G., Casciati, F., Casciati, S., Isalgue, A., Marzi, A. and Torra, V. (2011), "Fatigue laboratory tests toward the design of SMA portico-braces", Smart Struct. Syst., 7(1), 41-57. https://doi.org/10.12989/sss.2011.7.1.041
  5. Casciati, F. and Faravelli, L. (2009), "A passive control device with SMA components: From the prototype to the model", Struct. Health Monit., 16(7-8), 751-765.
  6. Casciati, F. and Lagorio, H.J. (1996), "Urban renewal aspects and technological devices in infrastructure rehabilitation", Proceedings of the 1st European Conference on Structural Control, Barcelona, Spain, World Scientific Publishing Co., Ltd.
  7. Casciati, S. and Marzi, A. (2010), "Experimental studies on the fatigue life of shape memory alloy bars", Smart Struct. Syst., 6(1), 73-85. https://doi.org/10.12989/sss.2010.6.1.073
  8. Casciati, F. and van der Eijk, C. (2008), "Variability in mechanical properties and microstructure characterization of CuAlBe shape memory alloys for vibration mitigation", Smart Struct. Syst., 4(2), 103-122. https://doi.org/10.12989/sss.2008.4.2.103
  9. Casciati, F. and Yao, T. (1995), "Comparison of strategies for the active control of civil structures", Proceedings of the 1st World Conference on Structural Control, (Eds. G. W. Housner, S. F. Masri, and A. G. Chassiakos), IASC, Los Angeles, CA, U.S.A., Vol. I, WA1-3.
  10. Casciati, F., Faravelli, L. and Al Saleh. R. (2009), "An SMA passive device proposed within the highway bridge benchmark", Struct. Health Monit., 16(6), 657-667. https://doi.org/10.1002/stc.332
  11. Casciati, F., Faravelli, L. and Hamdaoui, K. (2007), "Performance of a base isolator with shape memory alloy bars", Earthq. Eng. Eng. Vib., 6(4), 401-408. https://doi.org/10.1007/s11803-007-0787-2
  12. Casciati, F., Faravelli, L. and Yao, T. (1996), "Control of nonlinear structures using the fuzzy control approach", Nonlinear Dynam., 11(2), 171-187. https://doi.org/10.1007/BF00045000
  13. Chapman, M.C. (1999), "On the use of elastic input energy for seismic hazard analysis", Earthq. Spectra., 15(4), 607-635. https://doi.org/10.1193/1.1586064
  14. Constantinou, M.C. and Reinhorn, A.M. (1995), "Seismic isolation and control ", in Computer Analysis and Design of Earthquake Resistant Structures, Elsevier Applied Science, London.
  15. Constantinou, M., Mokha, A. and Reinhorn, A. (1990), "Teflon bearing in base isolation II: Modeling", J. Struct. Eng., 116(2), 455-74. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:2(455)
  16. Dolce, M., Cardone, D. and Ponzo, F.C. (2007), "Shaking-table tests on reinforced concrete frames with different isolation systems", Earthq. Eng. Struct. D., 36(5), 573-596. https://doi.org/10.1002/eqe.642
  17. Enke, D. L., Tirasirichai, C. and Luna, R. (2008), "Estimation of earthquake loss due to bridge damage in the St. Louis metropolitan area. II: Indirect losses", Nat. Hazard Rev., 9(1), 12-19. https://doi.org/10.1061/(ASCE)1527-6988(2008)9:1(12)
  18. Fajfar, P. and Vidic, T. (1994), "Consistent inelastic design spectra: hysteretic and input energy", Earthq. Eng. Struct. D., 23(5), 523-537. https://doi.org/10.1002/eqe.4290230505
  19. Faravelli, L. and Yao, T. (1996), "Use of adaptive network in fuzzy control of civil structures", Microcomput. Civil Eng., 11(1), 67-76. https://doi.org/10.1111/j.1467-8667.1996.tb00310.x
  20. Hancock, J., Bommer, J.J. and Stafford, P.J. (2008), "Numbers of scaled and matched accelerograms required for inelastic dynamic analyses", Earthq. Eng. Struct. D., 37(14), 1585-1607. https://doi.org/10.1002/eqe.827
  21. Hancock, J., Watson-Lamprey, J., Abrahamson, N.A., Bommer, J.J., Markatis, A., McCoy, E. and Mendis, R. (2006), "An improved method of matching response spectra of recorded earthquake ground motion using wavelets", J. Earthq. Eng., 10(1), 67-89.
  22. Housner, G.W. (1956), "Limit design of structures to resist earthquakes", Proceedings of the 1st World Conference on Earthquake Engineering, Berkeley, CA, U.S.A.
  23. Hsu, Y.T. and Fu, C.C. (2004), "Seismic effect on highway bridges in Chi Chi earthquake", J. Perform. Constr. Fac., 18(1), 47-53. https://doi.org/10.1061/(ASCE)0887-3828(2004)18:1(47)
  24. Hurlebaus, S. and Gaul, L. (2006), "Smart structure dynamics", Mech. Syst. Signal Pr., 20(2), 255-281. https://doi.org/10.1016/j.ymssp.2005.08.025
  25. IBC 2000 International Building Code International Code Council: Falls Church, VA, U.S.A.
  26. Iervolino, I., Maddaloni, G. and Cosenza, E. (2009), "A note on selection of time- histories for seismic analysis of bridges in Eurocode 8", J. Earthq. Eng., 13(8), 1125-1152. https://doi.org/10.1080/13632460902792428
  27. Ismail, M., Rodellar, J. and Ikhouane, F. (2009). "An innovative isolation bearing for motion-sensitive equipment", J. Sound. Vib., 326(3-5), 503-521. https://doi.org/10.1016/j.jsv.2009.06.022
  28. Ismail, M., Rodellar, J. and Ikhouane, F. (2010), "An innovative isolation device for aseismic design", Eng. Struct., 32(4), 1168-1183. https://doi.org/10.1016/j.engstruct.2009.12.043
  29. Jang, J.S.R. (1993), "ANFIS: Adaptive-network-based fuzzy inference system", IEEE T. Syst, Man, Cy. B., 23(3), 665-685. https://doi.org/10.1109/21.256541
  30. Kalkan, E. and Kunnath, S.H. (2008), "Relevance of absolute and relative energy content in seismic evaluation of structures", Adv. Struct. Eng., 11(1), 1-18. https://doi.org/10.1260/136943308784069478
  31. Liu, Z. (2009), "Reconnaissance and preliminary observations of bridge damage in the great Wenchuan earthquake, China", Struct. Eng. Int. J. Inter. Assoc. Bridge. Struct. Eng., 19(3), 277-282.
  32. Malhotra, P.K. (2003), "Strong-motion records for site-specific analysis", Earthq. Spectra, 19, 557-578. https://doi.org/10.1193/1.1598439
  33. Marano, G.C. and Greco, R. (2003), "Efficiency of base isolation systems in structural seismic protection and energetic assessment", Earthq. Eng. Struct. D., 32(10), 1505-1531. https://doi.org/10.1002/eqe.286
  34. Nezhad, H.T., Tait, M.J. and Drysdale, R.G. (2008), "Lateral response evaluation of fiber-reinforced neoprene seismic isolators utilized in an unbonded application", J. Struct. Eng., 134(10), 1627-1637. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:10(1627)
  35. Ordaz, M., Huerta, B. and Reinoso, E. (2003), "Exact computation of input-energy spectra from Fourier amplitude spectra", Earthq. Eng. Struct. D., 32(4), 597-605. https://doi.org/10.1002/eqe.240
  36. Ozbulut, O.E., Mir, C., Moroni, M.O., Sarrazin, M. and Roschke, P.N. (2007), "Fuzzy model of superelastic shape memory alloys for vibration control in civil engineering applications", Smart Mater. Struct., 16(3), 818-829. https://doi.org/10.1088/0964-1726/16/3/031
  37. Ozbulut, O.E. and Hurlebaus, S. (2010a), "Evaluation of the performance of a sliding-type base isolation system with a NiTi shape memory alloy device considering temperature effects", Eng. Struct., 32(1), 238-249. https://doi.org/10.1016/j.engstruct.2009.09.010
  38. Ozbulut, O.E. and Hurlebaus, S. (2010b), "Neuro-fuzzy modeling of temperature- and strain-rate dependent behavior of NiTi shape memory alloys for seismic applications", J. Intell. Mater. Struct., 21(8), 837-849. https://doi.org/10.1177/1045389X10369720
  39. Ozbulut, O.E. and Hurlebaus, S. (2011a), "Optimal design of superelastic-friction base isolators for seismic protection of highway bridges against near-field earthquakes", Earthq. Eng.Struct. D., 40(3), 273-291. https://doi.org/10.1002/eqe.1022
  40. Ozbulut, O.E. and Hurlebaus, S. (2011b), "Seismic assessment of bridge structures isolated by a shape memory alloy/rubber-based isolation system", Smart Mater. Struct., 20(1), 015003. https://doi.org/10.1088/0964-1726/20/1/015003
  41. Park, J.G. and Otsuka, H. (1999), "Optimal yield level of bilinear seismic isolation devices", Earthq. Eng. Struct. D., 28, 941-955. https://doi.org/10.1002/(SICI)1096-9845(199909)28:9<941::AID-EQE848>3.0.CO;2-5
  42. Soong, T.T. and Constantinou, M.C. (1994), "Passive and active structural vibration control in civil engineering", Springer, New York, U.S.A.
  43. Takewaki, I. (2004), "Bound of earthquake input energy", J. Struct. Eng., 130(9), 1289-1297. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:9(1289)
  44. Takewaki, I. and Fujita, K. (2009), "Earthquake input energy to tall and base-isolated buildings in time and frequency dual domains", Struct. Des. Tall Spec., 18(6), 589-606. https://doi.org/10.1002/tal.497
  45. Uang, C.M. and Bertero, V.V. (1990), "Evaluation of seismic energy in structures", Earthq. Eng. Struct. D., 19(1), 77-90. https://doi.org/10.1002/eqe.4290190108
  46. Usman, M., Sung, S.H., Jang, D.D., Jung, H.J. and Koo, J.H. (2009), "Numerical investigation of smart base isolation system employing MR elastomer", J. Phys., 149(1), 012099.
  47. Wang, Y.P., Chung, L.L. and Liao W.H. (1998), "Seismic response analysis of bridges isolated with friction pendulum bearings", Earthq. Eng. Struct. D., 27(10), 1069-1093. https://doi.org/10.1002/(SICI)1096-9845(199810)27:10<1069::AID-EQE770>3.0.CO;2-S
  48. Wilde, K., Gardoni, P. and Fujino, Y. (2000), "Base isolation system with shape memory alloy device for elevated highway bridges", Eng. Struct., 22(3), 222-229. https://doi.org/10.1016/S0141-0296(98)00097-2

Cited by

  1. Seismic retrofit in building structures using shape memory alloys vol.19, pp.4, 2015, https://doi.org/10.1007/s12205-015-0261-z
  2. Shape Memory Alloy Cables for Structural Applications vol.28, pp.4, 2016, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001457
  3. Acoustic emission analysis of cyclically loaded superelastic shape memory alloy fiber reinforced mortar beams vol.95, 2017, https://doi.org/10.1016/j.cemconres.2017.02.021
  4. Tensile and superelastic fatigue characterization of NiTi shape memory cables vol.27, pp.1, 2018, https://doi.org/10.1088/1361-665X/aa9819
  5. Performance assessment of buildings isolated with S-FBI system under near-fault earthquakes vol.17, pp.5, 2016, https://doi.org/10.12989/sss.2016.17.5.709
  6. Analog active valve control design for non-linear semi-active resetable devices vol.19, pp.5, 2011, https://doi.org/10.12989/sss.2017.19.5.487
  7. Aftershock fragility assessment of steel moment frames with self-centering dampers vol.168, pp.None, 2011, https://doi.org/10.1016/j.engstruct.2018.04.071
  8. Multi-level SMA/lead rubber bearing isolation system for seismic protection of bridges vol.29, pp.5, 2011, https://doi.org/10.1088/1361-665x/ab802b
  9. Long-stroke shape memory alloy restrainers for seismic protection of bridges vol.29, pp.11, 2020, https://doi.org/10.1088/1361-665x/aba53a