참고문헌
- Awad, H.A., Wickham, M.Q., Leddy, H.A., Gimble, J.M. and Guilak, F. (2004), "Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds", Biomaterials 25(16), 3211-3222. https://doi.org/10.1016/j.biomaterials.2003.10.045
- Chiara, G. and Ranieri, C. (2009), "Cartilage and bone extracellular matrix", Curr. Pharm. Design, 15(12), 1334- 1348. https://doi.org/10.2174/138161209787846739
- Engler, A.J., Sen, S., Sweeney, H.L. and Discher, D.E. (2006), "Matrix elasticity directs stem cell lineage specification", Cell, 126(4), 677-689. https://doi.org/10.1016/j.cell.2006.06.044
- Farndale, R.W., Buttle, D.J. and Barrett, A.J. (1986), "Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue", Biochim. Biophys. Acta. Gen. Sub., 883(2),173-177. https://doi.org/10.1016/0304-4165(86)90306-5
- Gong, J.P., Katsuyama, Y., Kurokawa, T. and Osada, Y. (2003), "Double-network hydrogels with extremely high mechanical strength", Adv. Mater., 15(14), 1155-1158. https://doi.org/10.1002/adma.200304907
- Gregory, S.S. and Annette, W. (2009), "Interactions between extracellular matrix and growth factors in wound healing", Wound Repair Regen., 17(2), 153-162. https://doi.org/10.1111/j.1524-475X.2009.00466.x
- Hannouche, D., Terai, H., Fuchs, J.R., Terada, S., Zand, S., Nasseri, B.A., Petite, H., Sedel, L. and Vacanti, J.P. (2007), "Engineering of implantable cartilaginous structures from bone marrow-derived mesenchymal stem cells", Tissue Eng., 13(1), 87-99. https://doi.org/10.1089/ten.2006.0067
- Janna, K.M., John, T.C., Christopher, G.W., Kristin, E.M. and Marc, E.L. (2007), "Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells", Stem Cells, 25(3), 655-663.
- Kim, Y.-J., Sah, R.L.Y., Doong, J.Y.H. and Grodzinsky, A.J. (1988), "Fluorometric assay of DNA in cartilage explants using Hoechst 33258", Anal. Biochem., 174(1), 168-176. https://doi.org/10.1016/0003-2697(88)90532-5
- Lee, H.J., Yu, C., Chansakul, T., Hwang, N.S., Varghese, S., Yu, S.M. and Elisseeff, J.H. (2008), "Enhanced chondrogenesis of mesenchymal stem cells in collagen mimetic peptide-mediated microenvironment", Tissue Eng., 14(11), 1843-1851. https://doi.org/10.1089/ten.tea.2007.0204
- Li, Q., Wang, D.A. and Elisseeff, J.H. (2003), "Heterogeneous-phase reaction of glycidyl methacrylate and chondroitin sulfate: Mechanism of ring-opening-transesterification Competition", Macromolecules, 36(7), 2556-2562. https://doi.org/10.1021/ma021190w
- Li, W., Cooper, J.A., Mauck, R.L. and Tuan, R.S. (2006), "Fabrication and characterization of six electrospun poly(a-hydroxy ester)-based fibrous scaffolds for tissue engineering applications", Acta Biomater., 2(4), 377-385. https://doi.org/10.1016/j.actbio.2006.02.005
- Marijnissen, W.J., van Osch, G.J., Aigner, J., van der Veen, S.W., Hollander, A.P., Verwoerd-Verhoef, H.L. and Verhaar, J.A. (2002), "Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering", Biomaterials, 23(6), 1511-1517. https://doi.org/10.1016/S0142-9612(01)00281-2
- Martens, P. and Anseth, K.S. (2000), "Characterization of hydrogels formed from acrylate modified poly(vinyl alcohol) macromers", Polymer, 41(21), 7715-7722. https://doi.org/10.1016/S0032-3861(00)00123-3
- Moutos, F.T., Freed, L.E. and Guilak, F. (2007), "A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage", Nat. Mater., 6(2), 162-167. https://doi.org/10.1038/nmat1822
-
Moutos, F.T. and Guilak, F. (2010), "Functional properties of cell-seeded three-dimensionally woven poly(
$\varepsilon$ - caprolactone) scaffolds for cartilage tissue engineering", Tissue Eng., 16(4), 1291-1301. https://doi.org/10.1089/ten.tea.2009.0480 - Mow, V.C., Ratcliffe, A. and Poole, A.R. (1992), "Carilage and diarthrodial joints as paradigms for hierarchical materials and structures", Biomaterials, 13(2), 67-97. https://doi.org/10.1016/0142-9612(92)90001-5
- Nakayama, A., Kakugo, A., Gong, J.P., Osada, Y., Takai, M., Erata T. and Kawano, S. (2004), "High mechanical strength double-network hydrogel with bacterial cellulose", Adv. Funct. Mater., 14(11), 1124-1128. https://doi.org/10.1002/adfm.200305197
- Place, E.S., Evans, N.D. and Stevens, M.M. (2009), "Complexity in biomaterials for tissue engineering", Nat. Mater., 8(6), 457-470. https://doi.org/10.1038/nmat2441
- Ramadoss, P. and Nagamani, K. (2009), "Behavior of high-strength fiber reinforced concrete plates under inplane and transverse loads", Struct. Eng. Mech., 31(4), 371-382. https://doi.org/10.12989/sem.2009.31.4.371
- Schmidt, O., Mizrahi, J., Elisseeff, J. and Seliktar, D. (2006), "Immobilized fibrinogen in PEG hydrogels does not improve chondrocyte-mediated matrix deposition in response to mechanical stimulation", Biotechnol. Bioeng., 95(6), 1061-1069. https://doi.org/10.1002/bit.21072
- Segawa, K. and Takiguchi, R. (1992), "Ultrastructural alteration of cartilaginous fibril arrangement in the rat mandibular condyle as revealed by high-resolution scanning electron microscopy", Anat. Rec., 234(4), 493-499. https://doi.org/10.1002/ar.1092340405
- Slivka, M.A., Leatherbury, N.C., Kieswetter, K. and Niederauer, G.G. (2001), "Porous, resorbable, fiberreinforced scaffolds tailored for articular cartilage repair", Tissue Eng., 7(6), 767-780. https://doi.org/10.1089/107632701753337717
- Strehin, I., Winnette McIntosh, A., Oliver, S., Afrah, S. and Elisseeff, J. H. (2009), "Synthesis and characterization of a chondroitin sulfate-polyethylene glycol corneal adhesive", J. Cataract Refr. Surg., 35(3), 567-576. https://doi.org/10.1016/j.jcrs.2008.11.035
- Tsang, K., Cheung, M., Chan, D. and Cheah, K. (2010), "The developmental roles of the extracellular matrix: beyond structure to regulation", Cell Tissue Res., 339(1), 93-110. https://doi.org/10.1007/s00441-009-0893-8
- Tzezana, R., Zussman, E. and Levenberg, S. (2008), "A layered ultra-porous scaffold for tissue engineering, created via a hydrospinning method", Tissue Eng., 14(4), 281-288. https://doi.org/10.1089/ten.tec.2008.0201
- Vanessa, T., Nathaniel, H., Lorenzo, M., Hyung, B.P., Zijun, Z., Joseph, M., Dror, S. and Jennifer, E. (2007), "Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels", Stem Cells, 25(11), 2730-2738. https://doi.org/10.1634/stemcells.2007-0228
- Varghese, S., Hwang, N.S., Canver, A.C., Theprungsirikul, P., Lin, D.W. and Elisseeff, J. (2008), "Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells", Matrix Biol., 27(1), 12-21. https://doi.org/10.1016/j.matbio.2007.07.002
- Wagenseil, J.E. and Mecham, R.P. (2009), "Vascular extracellular matrix and arterial mechanics", Physiol. Rev., 89(3), 957-989. https://doi.org/10.1152/physrev.00041.2008
- Williams, C.G., Kim, T.K., Taboas, A., Malik, A., Manson, P. and Elisseeff, J. (2003), "In Vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel", Tissue Eng., 9(4), 679-688. https://doi.org/10.1089/107632703768247377
- Williams, E.M., Graham, S.S., Akers, S.A., Reed, P.A. and Rushing, T.S. (2010), "Constitutive property behavior of an untra-high-performance concrete with and without steel fibers", Comput.Concrete, 7(2), 191-202. https://doi.org/10.12989/cac.2010.7.2.191
- Winer, J.P., Janmey, P.A., McCormick, M.E. and Funaki, M. (2009), "Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli", Tissue Eng., 15(1), 147-154. https://doi.org/10.1089/ten.tea.2007.0388
- Woodfield, T.B.F., Malda, J., de Wijn, J., Péters, F., Riesle, J. and van Blitterswijk, C.A. (2004), "Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique", Biomaterials, 25(18), 4149-4161. https://doi.org/10.1016/j.biomaterials.2003.10.056
- Yang, F., Williams, C.G., Wang, D.A., Lee, H., Manson, P.N. and Elisseeff, J. (2005), "The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells", Biomaterials, 26(30), 5991-5998. https://doi.org/10.1016/j.biomaterials.2005.03.018
피인용 문헌
- Nanofibrous hydrogel composites as mechanically robust tissue engineering scaffolds vol.32, pp.11, 2014, https://doi.org/10.1016/j.tibtech.2014.09.001
- Composites of electrospun-fibers and hydrogels: A potential solution to current challenges in biological and biomedical field vol.104, pp.3, 2016, https://doi.org/10.1002/jbm.b.33420
- Cell infiltration into a 3D electrospun fiber and hydrogel hybrid scaffold implanted in the brain vol.5, pp.1, 2015, https://doi.org/10.1080/21592535.2015.1005527
- Promoting chondrocyte cell clustering through tuning of a poly(ethylene glycol)-poly(peptide) thermosensitive hydrogel with distinctive microarchitecture vol.76, 2017, https://doi.org/10.1016/j.msec.2017.02.130
- Use of Magnetic Forces to Promote Stem Cell Aggregation During Differentiation, and Cartilage Tissue Modeling vol.25, pp.18, 2013, https://doi.org/10.1002/adma.201300342
- PLA short sub-micron fiber reinforcement of 3D bioprinted alginate constructs for cartilage regeneration vol.9, pp.4, 2017, https://doi.org/10.1088/1758-5090/aa90d7
- Hydrogel Composites Containing Carbon Nanobrushes as Tissue Scaffolds vol.1498, 2013, https://doi.org/10.1557/opl.2013.11
- Wet Spinning and Drawing of Human Recombinant Collagen vol.2, pp.3, 2016, https://doi.org/10.1021/acsbiomaterials.5b00461
- Leveraging “Raw Materials” as Building Blocks and Bioactive Signals in Regenerative Medicine vol.18, pp.5, 2012, https://doi.org/10.1089/ten.teb.2012.0080
- A Bioinspired Ultraporous Nanofiber-Hydrogel Mimic of the Cartilage Extracellular Matrix vol.5, pp.24, 2016, https://doi.org/10.1002/adhm.201600867
- Bioengineering of articular cartilage: past, present and future vol.8, pp.3, 2013, https://doi.org/10.2217/rme.13.28
- Bioinspired nanofibers support chondrogenesis for articular cartilage repair vol.109, pp.25, 2012, https://doi.org/10.1073/pnas.1121605109
- Biomaterial microarchitecture: a potent regulator of individual cell behavior and multicellular organization vol.105, pp.2, 2017, https://doi.org/10.1002/jbm.a.35914
- Preparation of animal polysaccharides nanofibers by electrospinning and their potential biomedical applications vol.103, pp.2, 2015, https://doi.org/10.1002/jbm.a.35187
- Hydrogel Composite Materials for Tissue Engineering Scaffolds vol.65, pp.4, 2013, https://doi.org/10.1007/s11837-013-0575-6
- 25th Anniversary Article: Engineering Hydrogels for Biofabrication vol.25, pp.36, 2013, https://doi.org/10.1002/adma.201302042
- Reinforcement of hydrogels using three-dimensionally printed microfibres vol.6, pp.1, 2015, https://doi.org/10.1038/ncomms7933
- Integrated three-dimensional fiber/hydrogel biphasic scaffolds for periodontal bone tissue engineering vol.65, pp.6, 2016, https://doi.org/10.1002/pi.5101
- Biomimetic fiber assembled gradient hydrogel to engineer glycosaminoglycan enriched and mineralized cartilage: Anin vitrostudy vol.103, pp.12, 2015, https://doi.org/10.1002/jbm.a.35506
- Stem cell-based therapies for osteoarthritis vol.25, pp.1, 2013, https://doi.org/10.1097/BOR.0b013e32835aa28d
- Wet-laid soy fiber reinforced hydrogel scaffold: Fabrication, mechano-morphological and cell studies vol.63, 2016, https://doi.org/10.1016/j.msec.2016.02.078
- The Good the Bad and the Ugly of Glycosaminoglycans in Tissue Engineering Applications vol.10, pp.2, 2017, https://doi.org/10.3390/ph10020054
- From intricate to integrated: Biofabrication of articulating joints vol.35, pp.10, 2017, https://doi.org/10.1002/jor.23602
- Tissue engineering strategies to study cartilage development, degeneration and regeneration vol.84, 2015, https://doi.org/10.1016/j.addr.2014.08.010
- Out-of-Plane 3D-Printed Microfibers Improve the Shear Properties of Hydrogel Composites 2017, https://doi.org/10.1002/smll.201702773
- A review on gradient hydrogel/fiber scaffolds for osteochondral regeneration 2018, https://doi.org/10.1002/term.2628
- Reinforcing an Injectable Gelatin Hydrogel with PLLA Microfibers: Two Routes for Short Fiber Production vol.300, pp.10, 2015, https://doi.org/10.1002/mame.201500033
- Cellularized Cylindrical Fiber/Hydrogel Composites for Ligament Tissue Engineering vol.15, pp.1, 2014, https://doi.org/10.1021/bm4013056
- Reinforcement of Mono- and Bi-layer Poly(Ethylene Glycol) Hydrogels with a Fibrous Collagen Scaffold vol.43, pp.11, 2015, https://doi.org/10.1007/s10439-015-1337-0
- In Situ Fabrication of Fiber Reinforced Three-Dimensional Hydrogel Tissue Engineering Scaffolds vol.3, pp.8, 2017, https://doi.org/10.1021/acsbiomaterials.7b00229
- Fibre-reinforced hydrogels with high optical transparency vol.59, pp.5, 2014, https://doi.org/10.1179/1743280414Y.0000000032
- Creating polymer hydrogel microfibres with internal alignment via electrical and mechanical stretching vol.35, pp.10, 2014, https://doi.org/10.1016/j.biomaterials.2013.12.081
- Nanocomposite hydrogels for cartilage tissue engineering: a review 2017, https://doi.org/10.1080/21691401.2017.1345924
- Smart Polymers for Neural Interfaces vol.53, pp.1, 2013, https://doi.org/10.1080/15583724.2012.751924
- A developmentally inspired combined mechanical and biochemical signaling approach on zonal lineage commitment of mesenchymal stem cells in articular cartilage regeneration vol.7, pp.1, 2015, https://doi.org/10.1039/C4IB00197D
- Osteoblast differentiation of mesenchymal stem cells on modified PES-PEG electrospun fibrous composites loaded with Zn2SiO4 bioceramic nanoparticles vol.92, pp.4, 2016, https://doi.org/10.1016/j.diff.2016.08.001
- Individualization of microfibrillated celluloses from oil palm empty fruit bunch: comparative studies between acid hydrolysis and ammonium persulfate oxidation vol.23, pp.1, 2016, https://doi.org/10.1007/s10570-015-0812-y
- State of the art composites comprising electrospun fibres coupled with hydrogels: a review vol.9, pp.3, 2013, https://doi.org/10.1016/j.nano.2012.10.008
- Positive and negative cues for modulating neurite dynamics and receptor expression vol.12, pp.2, 2017, https://doi.org/10.1088/1748-605X/aa61d1
- Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs vol.10, pp.6, 2014, https://doi.org/10.1016/j.actbio.2014.02.041
- Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-19502-y
- Mechanical behaviour of electrospun fibre-reinforced hydrogels vol.25, pp.3, 2014, https://doi.org/10.1007/s10856-013-5123-y
- Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks vol.10, pp.5, 2014, https://doi.org/10.1039/C3SM52272E
- Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair vol.11, 2015, https://doi.org/10.1016/j.actbio.2014.09.032
- A hydrogel/fiber composite scaffold for chondrocyte encapsulation in cartilage tissue regeneration vol.6, pp.86, 2016, https://doi.org/10.1039/C6RA15592H
- Silk fiber reinforcement modulates in vitro chondrogenesis in 3D composite scaffolds vol.12, pp.4, 2017, https://doi.org/10.1088/1748-605X/aa7697
- Ordered, adherent layers of nanofibers enabled by supramolecular interactions vol.2, pp.46, 2014, https://doi.org/10.1039/C4TB00724G
- Nutrient Channels Aid the Growth of Articular Surface-Sized Engineered Cartilage Constructs vol.22, pp.17-18, 2016, https://doi.org/10.1089/ten.tea.2016.0179
- Microfluidic on-chip biomimicry for 3D cell culture: a fit-for-purpose investigation from the end user standpoint vol.3, pp.2, 2017, https://doi.org/10.4155/fsoa-2016-0084
- 3D Printing and Electrospinning of Composite Hydrogels for Cartilage and Bone Tissue Engineering vol.10, pp.3, 2018, https://doi.org/10.3390/polym10030285
- Articular cartilage regeneration and tissue engineering models: a systematic review pp.1434-3916, 2019, https://doi.org/10.1007/s00402-018-3057-z
- Injectable hydrogels and nanocomposite hydrogels for cartilage regeneration pp.15493296, 2018, https://doi.org/10.1002/jbm.a.36449
- Toward Morphologically Relevant Extracellular Matrix in Vitro Models: 3D Fiber Reinforced Hydrogels vol.9, pp.1664-042X, 2018, https://doi.org/10.3389/fphys.2018.00966
- Fabrication and characterization of silk microfiber-reinforced methacrylated gelatin hydrogel with turnable properties vol.29, pp.17, 2018, https://doi.org/10.1080/09205063.2018.1493022
- Tissue Engineering for the Temporomandibular Joint vol.8, pp.2, 2019, https://doi.org/10.1002/adhm.201801236
- Controlling methacryloyl substitution of chondroitin sulfate: injectable hydrogels with tunable long-term drug release profiles pp.2050-7518, 2019, https://doi.org/10.1039/C8TB03020K
- Preparation of a Recombinant Spider Silk Protein/Pcl Blend Submicrofibrous Mat and Its Cytocompatibility vol.21, pp.2, 2011, https://doi.org/10.1177/096739111302100205
- A Review of Current Regenerative Medicine Strategies that Utilize Nanotechnology to Treat Cartilage Damage vol.10, pp.None, 2011, https://doi.org/10.2174/1874325001610010862
- Modern Strategies To Achieve Tissue-Mimetic, Mechanically Robust Hydrogels vol.8, pp.None, 2011, https://doi.org/10.1021/acsmacrolett.9b00276
- Nano-fibre Integrated Microcapsules: A Nano-in-Micro Platform for 3D Cell Culture vol.9, pp.None, 2011, https://doi.org/10.1038/s41598-019-50380-0
- Nanofiber-hydrogel composite–mediated angiogenesis for soft tissue reconstruction vol.11, pp.490, 2011, https://doi.org/10.1126/scitranslmed.aau6210
- Functional Protein-Based Bioinspired Nanomaterials: From Coupled Proteins, Synthetic Approaches, Nanostructures to Applications vol.20, pp.12, 2011, https://doi.org/10.3390/ijms20123054
- Hybrid and Composite Scaffolds Based on Extracellular Matrices for Cartilage Tissue Engineering vol.25, pp.3, 2011, https://doi.org/10.1089/ten.teb.2018.0245
- Fiber Density Modulates Cell Spreading in 3D Interstitial Matrix Mimetics vol.5, pp.6, 2019, https://doi.org/10.1021/acsbiomaterials.9b00141
- A Composite Hydrogel Scaffold Permits Self‐Organization and Matrix Deposition by Cocultured Human Glomerular Cells vol.8, pp.17, 2011, https://doi.org/10.1002/adhm.201900698
- Specialty Tough Hydrogels and Their Biomedical Applications vol.9, pp.2, 2011, https://doi.org/10.1002/adhm.201901396
- Novel 3D Hybrid Nanofiber Scaffolds for Bone Regeneration vol.12, pp.3, 2020, https://doi.org/10.3390/polym12030544
- An electrospun polyurethane scaffold-reinforced zwitterionic hydrogel as a biocompatible device vol.8, pp.12, 2011, https://doi.org/10.1039/c9tb02870f
- Three‐dimensional electrospun nanofibrous scaffolds for bone tissue engineering vol.108, pp.4, 2011, https://doi.org/10.1002/jbm.b.34479
- 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate vol.21, pp.6, 2011, https://doi.org/10.1021/acs.biomac.0c00045
- HBC-nanofiber hydrogel scaffolds with 3D printed internal microchannels for enhanced cartilage differentiation vol.8, pp.28, 2020, https://doi.org/10.1039/d0tb00616e
- Composite Hydrogel of Methacrylated Hyaluronic Acid and Fragmented Polycaprolactone Nanofiber for Osteogenic Differentiation of Adipose-Derived Stem Cells vol.12, pp.9, 2011, https://doi.org/10.3390/pharmaceutics12090902
- Electrospun nanofibers in cancer research: from engineering of in vitro 3D cancer models to therapy vol.8, pp.18, 2011, https://doi.org/10.1039/d0bm00390e
- Nanotechnology and Osteoarthritis. Part 2: Opportunities for advanced devices and therapeutics vol.39, pp.3, 2021, https://doi.org/10.1002/jor.24842
- Proangiogenic Peptide Nanofiber Hydrogels for Wound Healing vol.7, pp.3, 2021, https://doi.org/10.1021/acsbiomaterials.0c01264
- Anisotropic Fiber-Reinforced Glycosaminoglycan Hydrogels for Heart Valve Tissue Engineering vol.27, pp.9, 2011, https://doi.org/10.1089/ten.tea.2020.0118
- A Collagen-Mimetic Organic-Inorganic Hydrogel for Cartilage Engineering vol.7, pp.2, 2021, https://doi.org/10.3390/gels7020073
- Fabrication of Thick Microfiber Mats Using Melt-Electrospinning vol.38, pp.7, 2011, https://doi.org/10.7736/jkspe.020.110
- Surface Modification of Nanofibers by Physical Adsorption of Fiber-Homologous Amphiphilic Copolymers and Nanofiber-Reinforced Hydrogels with Excellent Tissue Adhesion vol.7, pp.10, 2021, https://doi.org/10.1021/acsbiomaterials.1c00982
- Preparation and evaluation of gellan gum hydrogel reinforced with silk fibers with enhanced mechanical and biological properties for cartilage tissue engineering vol.15, pp.11, 2011, https://doi.org/10.1002/term.3237