References
- Barik, M. and Mukhopadhyay, M. (2002), "A new stiffened plate element for the analysis of arbitrary plates", Thin Wall. Struct., 40, 625-632. https://doi.org/10.1016/S0263-8231(02)00016-2
- Bhar, A., Phoenix, S.S. and Satsangi, S.K. (2010), "Finite element analysis of laminated composite stiffened plates using FSDT and HSDT: A comparative perspective", Compos. Struct., 92(2), 312-321. https://doi.org/10.1016/j.compstruct.2009.08.002
- Bonorchis, D. and Nurick, G.N. (2010), "The analysis and simulation of welded stiffener plates subjected to localised blast loading", J. Impact Eng., 37(3), 260-273. https://doi.org/10.1016/j.ijimpeng.2009.08.004
- He, J. and He, G. (2010), "Strength analysis of composite grid stiffened structure", J. Solid Rocket Tech., 33(4), 449-453.
- Hegaze, M.M. (2010), "Nonlinear dynamic analysis of stiffened and unstiffened laminated composite plates using a high-order element", J. Compos. Mater., 44(3), 327-346. https://doi.org/10.1177/0021998309345356
- Huang, D.T. (2009), "A point receptance array approach for stiffened panel structures", Int. J. Mech. Sci., 52(10), 1299-1312.
- Jiang, Z., Bai, Z., Yan, B. and Song, D. (2010), "Advances in study on impact response of thin and stiffened metal plates under blast loading", J. Vib. Shock, 29(11), 41-46.
- Li, L. and Xiaohui, R. (2010), "Stiffened plate bending analysis in terms of refined triangular laminated plate element", Compos. Struct., 92(12), 2936-2945. https://doi.org/10.1016/j.compstruct.2010.05.005
- Mallela, U. and Upadhyay, A. (2006), "Buckling of laminated composite stiffened panels subjected to in-plane shear: A parametric study", Thin Wall. Struct., 44, 354-361. https://doi.org/10.1016/j.tws.2006.03.008
- Nath, S.K.D., Ahmed, S.R. and Kim, S. (2010), "Analytical solution of a stiffened orthotropic plate using alternative displacement potential approach", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 224(1), 89-99. https://doi.org/10.1243/09544100JAERO499
- Patel, S., Datta, P. and Sheikh, A. (2006), "Buckling and dynamic instability analysis of stiffened shell panels", Thin Wall. Struct., 44, 321-333. https://doi.org/10.1016/j.tws.2006.03.004
- Rikards, R., Chate, A. and Ozolinsh, O. (2001), "Analysis for buckling and vibrations of composite stiffened shells and plates", Compos. Struct., 51, 361-370. https://doi.org/10.1016/S0263-8223(00)00151-3
- Schittkowski, K. (1985), "A unified outline of non-linear programming algorithms", J. Mech. Trans. Auto. D., 107, 449-453. https://doi.org/10.1115/1.3260744
- Stamatelos, D.G., Labeas, G.N. and Tserpes, K.I. (2011), "Analytical calculation of local buckling and postbuckling behavior of isotropic and orthotropic stiffened panels", Thin Wall. Struct., 49(3), 422-430. https://doi.org/10.1016/j.tws.2010.11.008
- Tamijani, A.Y. and Kapania, R.K. (2010), "Buckling and vibration of curvilinearly-stiffened plate subjected to inplane loads using Chebyshev ritz method", Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2010-3036.
- Zhang, Z., Chen, H. and Ye, L. (2011), "A stiffened plate element model for advanced grid stiffened composite plates/shells", J. Compos. Mater., 45, 187-202. https://doi.org/10.1177/0021998310371877
- Zhang, Z.H., Xiao, C., Chen, L., Wang, C. and Huang, Y. (2010), "Approximate scaling method of stiffened plate subjected to underwater explosion blast", J. Ship Mech., 14(11), 1276-1283.
- Zhang, W., Wang, A., Vlahopoulos, N. and Wu, K. (2005), "Vibration analysis of stiffened plates under heavy fluid loading by an energy finite element analysis formulation", Finite Elem. Analy. Des., 41, 1056-1078. https://doi.org/10.1016/j.finel.2004.10.012
Cited by
- Engineering Challenges in the Design of Alberta’s Oil Sands Projects vol.18, pp.4, 2013, https://doi.org/10.1061/(ASCE)SC.1943-5576.0000163
- Economical design procedures for built-up box sections subject to compression and bi-axial bending vol.1, 2015, https://doi.org/10.1016/j.istruc.2014.09.001
- Novel Design Procedures for Rectangular Hollow Steel Sections Subject to Compression and Major and Minor Axis Bending vol.20, pp.4, 2015, https://doi.org/10.1061/(ASCE)SC.1943-5576.0000248
- Design space representation of channel members for industrial applications vol.14, pp.3, 2014, https://doi.org/10.1007/s13296-014-3009-6
- Design expression for web shear buckling of box sections by accounting for flange restraints vol.110, 2015, https://doi.org/10.1016/j.jcsr.2015.02.018
- Rational Design of Pipe Racks Used for Oil Sands and Petrochemical Facilities vol.20, pp.2, 2015, https://doi.org/10.1061/(ASCE)SC.1943-5576.0000224
- Design of Mobile Facilities Used in Surface Mining Projects vol.21, pp.1, 2016, https://doi.org/10.1061/(ASCE)SC.1943-5576.0000257
- Modern steel design and construction in Canada’s oil sands industry vol.7, pp.1, 2014, https://doi.org/10.1002/stco.201350005
- Local stability of partially restrained rectangular tubes subject to shear, compression, and bending vol.2, pp.3, 2011, https://doi.org/10.1002/cend.201900024
- Economical Damage Classification Approach for Blast-Resistant Buildings in Petrochemical Plants vol.25, pp.3, 2011, https://doi.org/10.1061/(asce)sc.1943-5576.0000503