• 제목/요약/키워드: steel design

검색결과 5,552건 처리시간 0.032초

Flexural-torsional buckling tests of cold-formed steel compression members at elevated temperatures

  • Heva, Yasintha Bandula;Mahendran, Mahen
    • Steel and Composite Structures
    • /
    • 제14권3호
    • /
    • pp.205-227
    • /
    • 2013
  • Current design standards do not provide adequate guidelines for the fire design of cold-formed steel compression members subject to flexural-torsional buckling. Eurocode 3 Part 1.2 (2005) recommends the same fire design guidelines for both hot-rolled and cold-formed steel compression members subject to flexural-torsional buckling although considerable behavioural differences exist between cold-formed and hot-rolled steel members. Past research has recommended the use of ambient temperature cold-formed steel design rules for the fire design of cold-formed steel compression members provided appropriately reduced mechanical properties are used at elevated temperatures. To assess the accuracy of flexural-torsional buckling design rules in both ambient temperature cold-formed steel design and fire design standards, an experimental study of slender cold-formed steel compression members was undertaken at both ambient and elevated temperatures. This paper presents the details of this experimental study, its results, and their comparison with the predictions from the current design rules. It was found that the current ambient temperature design rules are conservative while the fire design rules are overly conservative. Suitable recommendations have been made in relation to the currently available design rules for flexural-torsional buckling including methods of improvement. Most importantly, this paper has addressed the lack of experimental results for slender cold-formed steel columns at elevated temperatures.

철골조학교(鐵骨組學校)의 설계요소(設計要素)에 관한 연구(硏究) (A Study on the Design Elements for Steel-Framed School Buildings)

  • 이재훈;황준근
    • 교육시설
    • /
    • 제11권1호
    • /
    • pp.47-57
    • /
    • 2004
  • The Architects' design process is subjective and mysterious'. If we can reveal this process, it will be very helpful to proceed similar design projects. In the aspect of steel production, Korea is a strong country, but in the aspect of steel usage, Korea does not show its impacts as compared with other countries'. Even though steel has many merits in design as well as in structure, in Korea we have not applied it as design elements. In this situation, the demand of steel in school buildings is increasing, but steel also is used only on the basis of the structural and material meaning. So this thesis tries to find design elements of steel structure buildings, which can be applied in school buildings, through the analysis of existing steel structure buildings and the characteristics of steel.

Evaluation of ductility capacity of steel-timber hybrid buildings for seismic design in Taiwan

  • Chen, Pei-Ching;Su, I-Ping
    • Earthquakes and Structures
    • /
    • 제23권2호
    • /
    • pp.197-206
    • /
    • 2022
  • Recently, steel-timber hybrid buildings have become prevalent worldwide because several advantages of both steel and timber structures are maintained in the hybrid system. In Taiwan, seismic design specification related to steel-timber hybrid buildings remains void. In this study, the ductility capacity of steel-timber hybrid buildings in Taiwanese seismic design specification is first proposed and evaluated using nonlinear incremental dynamic analysis (IDA). Three non-linear structural models, 12-story, 8-story, and 6-story steel-timer hybrid buildings were constructed using OpenSees. In each model, Douglas-fir was adopted to assemble the upper 4 stories as a timber structure while a conventional steel moment-resisting frame was designated in the lower part of the model. FEMA P-695 methodology was employed to perform IDAs considering 44 earthquakes to assess if the ductility capacity of steel-timber hybrid building is appropriate. The analytical results indicate that the current ductility capacity of steel moment-resisting frames can be directly applied to steel-timber hybrid buildings if the drift ratio of each story under the seismic design force for buildings in Taiwan is less than 0.3%. As a result, engineers are able to design a steel-timber hybrid building straightforwardly by following current design specification. Otherwise, the ductility capacity of steel-timber hybrid buildings must be modified which depends on further studies in the future.

연속철근콘크리트 포장의 횡방향 철근 설계방법 및 시공관련 이슈 검토 (Construction Issues and Design Procedure for Transverse Steel in Continuously Reinforced Concrete Pavement (CRCP))

  • 최판길;원문철
    • 한국도로학회논문집
    • /
    • 제16권4호
    • /
    • pp.1-9
    • /
    • 2014
  • PURPOSES: The objective of this study is to evaluate construction issues and design for transverse steel in continuously reinforced concrete pavement(CRCP). METHODS : The first continuously reinforced concrete pavement(CRCP) design procedure appeared in the 1972 edition of the "AASHTO Interim Guide for Design of Pavement Structures", which was published in 1981 with Chapter 3 "Guide for the Design of Rigid Pavement" revised. A theory that was accepted at that time for the analysis of steel stress in concrete pavement, called subgrade drag theory(SGDT), was utilized for the design of reinforcement of CRCP - tie bar design and transverse steel design - in the aforementioned AASHTO Interim Guide. However SGDT has severe limitations due to simple assumptions made in the development of the theory. As a result, any design procedures for reinforcement utilizing SGDT may have intrinsic flaws and limitations. In this paper, CRCP design procedure for transverse steel was introduced and the limitations of assumptions for SGDT were evaluated based on various field testing. RESULTS: Various field tests were conducted to evaluate whether the assumptions of SGDT are reasonable or not. Test results show that 1) temperature variations exist along the concrete slab depth, 2) very little stress in transverse steel, and 3) warping and curling in concrete slab from the field test results. As a result, it is clearly revealed out that the assumptions of SGDT are not valid, and transverse steel and tie bar designs should be based on more reasonable theories. CONCLUSIONS : Since longitudinal joint is provided at 4.1-m spacing in Korea, as long as joint saw-cut is made in accordance with specification requirements, the probability of full-depth longitudinal cracking is extremely small. Hence, for transverse steel, the design should be based on the premise that its function is to keep the longitudinal steel at the correct locations. If longitudinal steel can be placed at the correct locations within tolerance limits, transverse steel is no longer needed.

강상판교의 생애주기비용 최적설계 (Optimum Life-cycle Cost Design of Orthotropic Steel Deck Bridges)

  • 조효남;민대홍;이광민
    • 한국강구조학회 논문집
    • /
    • 제13권4호
    • /
    • pp.337-349
    • /
    • 2001
  • 교량은 계속적으로 변하는 하중 환경에 의해서 다른 구조물에 비해 비교적 빨리 노후화 되기 때문에 초기비용 이외에도 교량의 유지관리, 교통의 원활한 소통 또는 적체 등에 따른 비용, 교량의 손상에 따른 보수보강 및 교량의 해체 재건설 등 추가적인 비용의 영향이 크므로 공용간 생애주기 비용(LCC)을 설계단계에서부터 체계적이고 합리적으로 고려되어야 한다. 이에 본 연구에서는 강상판교의 설계에 있어서 주형의 휨 전단, 사용성, 피로에 대한 보강기대비용 등을 포함하는 LCC에 근거한 비용함수모형을 이용하여 이를 최적설계에 적용하고 기존의 설계방법과 비교 분석하였다. 적용예제의 결과에 나타난 바와 같이 LCC를 고려한 강상판 교량의 최적설계는 더욱 합리적이고, 경제적이며, 안전한 설계를 유동할 수 있으리라 판단된다.

  • PDF

Current practices and future directions of steel design in Japan

  • Yamaguchi, Eiki
    • Steel and Composite Structures
    • /
    • 제5권2_3호
    • /
    • pp.159-168
    • /
    • 2005
  • Four design codes/regulations for steel structures in Japan are briefly reviewed. Some of them employ the limit state design concept while the others are still based on the allowable stress design concept. The process for revision is now in action. The directions in the development of structural design codes are also reported herein. It is noted that a current trend in this development is to employ the performance-based design concept that has been successfully implemented in some seismic design codes.

Optimum design of geometrically non-linear steel frames with semi-rigid connections using a harmony search algorithm

  • Degertekin, S.O.;Hayalioglu, M.S.;Gorgun, H.
    • Steel and Composite Structures
    • /
    • 제9권6호
    • /
    • pp.535-555
    • /
    • 2009
  • The harmony search method based optimum design algorithm is presented for geometrically non-linear semi-rigid steel frames. Harmony search method is recently developed metaheuristic algorithm which simulates the process of producing a musical performance. The optimum design algorithm aims at obtaining minimum weight steel frames by selecting from standard set of steel sections such as European wide flange beams (HE sections). Strength constraints of Turkish Building Code for Steel Structures (TS648) specification and displacement constraints were used in the optimum design formulation. The optimum design algorithm takes into account both the geometric non-linearity of the frame members and the semi-rigid behaviour of the beam-to-column connections. The Frye-Morris polynomial model is used to calculate the moment-rotation relation of beam-to-column connections. The robustness of harmony search algorithm, in comparison with genetic algorithms, is verified with two benchmark examples. The comparisons revealed that the harmony search algorithm yielded not only minimum weight steel frames but also required less computational effort for the presented examples.

A practical approach for fire safety design of fire-resistant steel members

  • Li, Guo-Qiang;Ding, Jun;Sakumoto, Y.
    • Steel and Composite Structures
    • /
    • 제5권1호
    • /
    • pp.71-86
    • /
    • 2005
  • Based on the test data of Nippon Steel Corporation, the formulas for calculating mechanical properties of fire-resistant (FR) steel at elevated temperatures have been established. A practical approach for fire safety design of FR steel members, including axially compressed members, flexural members and eccentrically compressed members, is developed in this paper. Compared with the full-scale specimen experiments and FEM numerical analysis, this practical approach for fire safety design of FR steel members is demonstrated to be effective and precise.

강상형교 설계최적화를 위한 마이크로 유전알고리즘의 적용 (An Application of Micro-GA for the Design Optimization of Steel Box Girder Bridges)

  • 김제헌;류연선;김정태;조현만
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.154-161
    • /
    • 2001
  • A procedure of the design optimization for steel box girder bridges using micro genetic algorithms(μGA) is developed. The effect of population size is investigated and the efficiency and reliability of μGA is demonstrated in the optimum design of steel box girder bridges. Optimum design problems of steel box girder bridges are formulated, where tile design of concrete slab is based on the USD specifications and steel box girder based on LRFD respectively. Design of optimizations of single-span and 2-span steel box girder bridges are performed with the population size of 5, 40, 80, and 120, respectively The μGA-based optimum design of the 3-span steel box girder bridge is compared with SQP results.

  • PDF

Analysis and design for stability in the U.S. - An overview

  • Lui, Eric M.;Ge, Ma
    • Steel and Composite Structures
    • /
    • 제5권2_3호
    • /
    • pp.103-126
    • /
    • 2005
  • This paper describes the theoretical background and underlying principles behind the American Institute of Steel Construction Load and Resistance Factor Design (AISC LRFD) Specification for the analysis and stability design of steel frames. Various analysis procedures that can take into consideration the effects of member instability, frame instability, member-frame interaction, geometric imperfections, and inelasticity are reviewed. Design approaches by which these factors can be incorporated in the design of steel moment frames are addressed. Current specification guidelines for member and frame design in the U.S. are summarized. Examples are given to illustrate the validity of the design equations. Some future directions for the analysis and stability design of steel frames are discussed.