DOI QR코드

DOI QR Code

광결정 광섬유를 갖는 WDM-ROF 시스템의 고주파 신호전송특성 분석

Analysis of RF Signal Transmission in WDM-ROF Employging Photonic Crystal Fiber

  • 투고 : 2010.09.17
  • 심사 : 2010.10.05
  • 발행 : 2011.01.31

초록

광결정 광섬유를 포함한 WDM-ROF (wavelength division multiplexing - radio over fiber) 시스템의 고주파신호 전송특성을 분석하였다. 기존의 단일모드 광섬유를 사용한 WDM-ROF 시스템에 있어, 각 WDM 채널의 파장에 따른 고주파신호 전송특성을 분석하였다. 이 경우, 원격노드(remote node)에서의 고주파 신호 특성은 단일모드 광섬유의 분산 특성으로 인해 각 WDM 채널의 파장에 따라 고주파신호 수신 파워의 편차를 나타내게 되며, 이는 전체 시스템 설계시 제한 요소로 작용하게 된다. 광결정 광섬유를 단일모드 광섬유와 함께 사용함으로써 광결정 광섬유의 분산 보상 특성을 이용하여 WDM 채널에 따른 고주파 전송특성을 개선할 수 있음을 확인하였다.

We analyze transmission performance of radio frequency signal in WDM-ROF (wavelength division multiplexing - radio over fiber) system employing photonic crystal fiber. In a WDM-ROF system employing conventional single-mode fiber, transmission performance of radio frequency signal is analyzed depending on each WDM channel. In this case, each WDM channel experiences power fluctuation of received RF signal in remote node because of double sidebands of the modulated signal and wavelength dependent dispersion of single mode fiber. This RF power fluctuation acts as a design constraint in viewpoint of system design. By employing photonic crystal fiber (PCF) with dispersion compensation characteristics, the transmission performance of RF signal can be improved compared with the case with SMF only.

키워드

참고문헌

  1. R.A. Griffin, H.M. Salgado, P.M. Lane, J.J. O'Reilly, "System capacity for millimeter-wave radio-overfiber distribution employing an optically supported PLL," J. Lightwave Technology, vol. 17, no. 12, pp. 2480-2487, 1999. https://doi.org/10.1109/50.809666
  2. B. Wilson, Z, Ghassemlooy, I. Darwazeh, Analogue optical fibre communications, London, U.K.: IEE, 1995.
  3. A. K. Dutta, N. K. Dutta, M. Fukiwara, WDM Technologies: Passive Optical Components, San Diego, USA:Academic Press, 2003.
  4. ITU-T Recommendation G.694.1 (2002), Spectral grids for WDM applications: DWDM frequency grid.
  5. I. Kaminow, T. Li, A. E. Willner, Optical Fiber Telecommunications V, Burlington, USA:Academic Press, 2008.
  6. H. Toda, T. Nakasyotani, T. Kuri, K.-I. Kitayama, "WDM mm-wave-band radio-on-fiber system using single supercontinuum light source in cooperation with photonic up-conversion," International Topical Meeting on Microwave Photonics (MWP 2004), pp. 161-164, Oct 2004.
  7. Z. Cao, J. Yu, H. Zhou, W. Wang, M. Xia, J. Wang, Q. Tang, L. Chen, "WDM-RoF-PON Architecture for Flexible Wireless and Wireline Layout," J. Opt. Commun. Netw. vol. 2, pp. 117-121, 2010. https://doi.org/10.1364/JOCN.2.000117
  8. G. H. Smith, D. Novak, Z. Ahmed, "Overcoming Chromatic-Dispersion Effects in Fiber-Wireless Systems Incorporating External Modulators," IEEE Trans. Microwave Theory and Techniques, vol. 45, no. 8, pp. 1410-1415, 1997. https://doi.org/10.1109/22.618444
  9. Corning, "Corining SMF-28 Optical Fiber: Product Information," PI1036, April 2002.
  10. J. C. Knight, T. A. Birks, P. St. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett,. vol. 21, no. 19, pp. 1547-1549, 2006.
  11. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett., vol. 22, no. 13, pp. 961-963, 1997. https://doi.org/10.1364/OL.22.000961
  12. F. Gerome, J. Auguste, and J. Blondy, "Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt. Lett., vol. 29, no. 23, pp. 2725-2727, 2004. https://doi.org/10.1364/OL.29.002725
  13. Soan Kim, Chul-Sik Kee, "Dispersion properties of dual-core photonic quasicrystal fiber," Opt. Express, vol. 17, no. 18, pp. 15885-15890, 2009. https://doi.org/10.1364/OE.17.015885
  14. S. Kim and C.-K. Kee, "Dispersion properties of dual-core photonic-quasicrystal fiber," Opt. Express, vol. 17, no. 18, pp. 15885-15890, 2009. https://doi.org/10.1364/OE.17.015885

피인용 문헌

  1. 광결정 광섬유를 이용한 WDM-RoF 시스템의 채널간 전력변화 편차 분석 vol.16, pp.4, 2011, https://doi.org/10.6109/jkiice.2012.16.4.821