DOI QR코드

DOI QR Code

Antioxidant Activity from Different Root Parts of 6-year-old Panax ginseng C.A. Meyer (Yun-poong)

6년생 인삼(연풍)의 뿌리부위별 항산화 활성

  • Jo, Ji-Eun (Dept. of Food and Nutrition, Chungnam National University) ;
  • Kim, Kyoung-Hee (Dept. of Food and Nutrition, Chungnam National University) ;
  • Kim, Mi-Seon (Dept. of Food and Nutrition, Chungnam National University) ;
  • Choi, Jae-Eul (College of Agriculture & Life Science, Chungnam National University) ;
  • Byun, Myung-Woo (Dept. of Culinary Nutrition, Woosong University) ;
  • Yook, Hong-Sun (Dept. of Food and Nutrition, Chungnam National University)
  • 조지은 (충남대학교 식품영양학과) ;
  • 김경희 (충남대학교 식품영양학과) ;
  • 김미선 (충남대학교 식품영양학과) ;
  • 최재을 (충남대학교 농업생명과학대학) ;
  • 변명우 (우송대학교 외식조리영양학부) ;
  • 육홍선 (충남대학교 식품영양학과)
  • Received : 2011.01.05
  • Accepted : 2011.03.08
  • Published : 2011.04.30

Abstract

The objective of this study was to evaluate the contents of reducing sugar and total polyphenol and the antioxidant activity of freeze-dried ginseng (Panax ginseng C.A. meyer cv Yun-poong). Ginseng root consists of the main root (MR), lateral root (LR) and fine root (FR). These roots were sorted into 3~4 groups (MR 1~4 groups, LR 1~4 groups, FR 1~3 groups) depending on the diameter of center region. The reducing sugar content has no influence on the diameter, but the reducing sugar content was decreased by subdivision. Total polyphenol contents of ginseng were the highest in FR-3 among all others. The antioxidant activity was measured using DPPH radical scavenging activity and ABTS radical scavenging activity. The $IC_{50}$ (50% inhibitory concentration) value of the hydrogen donating activity was the highest in FR-3 as 7.03 mg/mL and the lowest in MR-2 as 37.02 mg/mL. Overall, hydrogen donating activity of FR was higher than the main root and lateral root significantly (p<0.05). The ABTS radical scavenging activity in FR-3 showed the highest radical scavenging activity as 25.49%. This study's findings suggest that the total polyphenol contents and antioxidant activity of ginseng were the highest in FR-3, and that polyphenol contents and antioxidant activity of ginseng were related to root area and diameter.

6년생 인삼(Panax ginseng C.A. meyer, 연풍)의 뿌리를 주근, 지근, 세근으로 나누고 각각의 중앙부위의 직경에 따라, 직경이 큰 것에서부터 1에서 4까지 등급을 나누었다(MR 1~4, LR 1~4, FR 1~3). 각각의 시료는 동결건조한 뒤 환원당 함량, 페놀함량 및 항산화 효과를 비교하였다. 환원당 함량은 직경에 따른 영향은 없었으나, 주근, 지근, 세근으로 부위가 세분화됨에 따라 환원당 함량이 감소하는 경향을 나타내었다. 총 페놀화합물의 함량은 FR-3이 8.19 mg/g으로 다른 부위보다 2배 정도 높은 페놀함량을 나타내었다. 수소 공여능의 $IC_{50}$값을 비교한 결과 FR-3의 $IC_{50}$ 값이 7.03 mg/mL로 가장 높았고, MR-2에서 37.02 mg/mL로 가장 낮았다. 전체적으로 세근의 수소공여능이 주근과 지근에 비해 높았다. ABTS 라디칼 소거능 역시 FR-3에서 24.87%의 가장 높은 라디칼 소거능을 나타내, 다른 부위보다 세근의 활성이 유의적으로 높음을 알 수 있었다. FRAP value의 측정 결과 역시 FR-3이 $0.23{\mu}M$로 가장 높게 나타났다. 본 연구를 통해 인삼 연풍의 항산화 활성은 주근과 지근보다는 세근에서 유의적으로 높게 나타났으며, 세근 중에서도 직경이 작은 부위에서 높은 페놀함량 및 항산화 활성을 나타내는 것을 알 수 있었다.

Keywords

References

  1. Chung YS, Chang YH, Sung JH. 2006. The effect of ginseng and caffeine products on the antioxidative activities of mouse kidney. J Ginseng Res 30: 15-21. https://doi.org/10.5142/JGR.2006.30.1.015
  2. Ha DC, Ryu GH. 2005. Chemical components of red, white and extruded root ginseng. J Korean Soc Food Sci Nutr 34: 247-254. https://doi.org/10.3746/jkfn.2005.34.2.247
  3. Park CK, Jeon BS, Yang JW. 2003. The chemical components of Korean ginseng. Food Industry and Nutrition 8: 10-23.
  4. Hikino H, Oshima Y, Suzuki Y, Konno C. 1985. Isolation and hypoglycemic activity of panaxan F, G and H, glycan of Panax ginseng roots. Shoyakugaku Zasshi 39: 331-333.
  5. Okuda H. 1992. Inhibitory substances in Korean red ginseng toward toxohormones-L: A toxic substance secreted from tumor cells. The Ginseng Review 15: 34-37.
  6. Kim ND, Han BH, Lee EB, Kang JY. 1987. Studies on ginseng on antistress effects. Kor J Pharmacog 10: 61-67.
  7. Elma ZT, Ilan EZ, Christina IH. 1991. Effect of ginsenoside Rg1 on insulin binding in mice liver and brain membrane. Phytotheraphy Res 5: 46-48. https://doi.org/10.1002/ptr.2650050114
  8. Henishin CC, Lee R, Wang IC, Liu HJ. 1991. Effect of ginsenoside on central cholinergic metabolism. Pharmacology 42: 223-229. https://doi.org/10.1159/000138801
  9. Kim SS, Kim JD, Kim H, Shin MS, Park CK, Park HM, Yang JW. 2002. The effects on the blood lipid profiles and body fat by long term administration of red ginseng product. J Ginseng Res 26: 67-73. https://doi.org/10.5142/JGR.2002.26.2.067
  10. Gutteridge JMC, Halliwell B. 1994. Antioxidants in nutrition, health and disease. Oxford University Press, Oxford, UK. p 1-62.
  11. Jayat C, Ratinaud MH. 1993. Cell cycle analysis by flow cytometry: principles and application. Biol Cell 78: 15-25. https://doi.org/10.1016/0248-4900(93)90110-Z
  12. Chance B, Sies H, Boveris A. 1979. Hydroperoxide metabolism in mammalian organs. Physiol Rev 59: 527-605.
  13. Kwon WS, Lee MG, Choi KT. 2000. Breeding process and characteristics of Yunpoong, a new variety of Panax ginseng C.A. meyer. J Ginseng Res 24: 1-7.
  14. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426-428. https://doi.org/10.1021/ac60147a030
  15. Gao X, Bjork L, Trajkovski V, Uggla M. 2000. Evaluation of antioxidant activities of rosehip ethanol extracts in different test systems. J Sci Food Agric 80: 2021-2027. https://doi.org/10.1002/1097-0010(200011)80:14<2021::AID-JSFA745>3.0.CO;2-2
  16. Blois MS. 1958. Antioxidant activity determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  17. Pellegrini N, Re R, Yang M, Rice-Evans C. 1998. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2'-azinobis(3-ethylbenzothiazoline- 6-sulfonic acid) radical cation decolorization assay. Method Enzymol 299: 379-389.
  18. Benzie IFF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal Biochem 230: 70-79.
  19. Son HJ, Ryu GH. 2009. Chemical compositions and antioxidant activity of extract from a extruded white ginseng. J Korean Soc Food Sci Nutr 38: 946-950. https://doi.org/10.3746/jkfn.2009.38.7.946
  20. Yang HJ, Ji YQ, Chung KW, Ryu GH. 2008. Fermentation characteristics of extruded tissue cultured mountain ginseng. J Korean Soc Food Sci Nutr 37: 1654-1659. https://doi.org/10.3746/jkfn.2008.37.12.1654
  21. Lee SJ, Park DW, Jang HG, Kim CY, Park YS, Kim TC, Heo BG. 2006. Total phenol electron donating ability and tyrosinase inhibition activity of pear cut branch extract. Kor J Hort Sci Technol 24: 338-342.
  22. Wee JJ, Park JD, Kim MW. 1989. Identification of phenolic antioxidants components isolated from Panax ginseng. J Korean Agric Chem Soc 32: 50-56.
  23. Wee JJ, Park JD, Kim MW. 1990. Structural study on a permethyl ether of a new polyphenolic compound isolated from Panax ginseng. J Ginseng Res 14: 27-29.
  24. Han BH, Park MH, Han YN. 1981. Studies on the antioxidant components of Korean ginseng (III). Identification of phenolic acid. Arch Pharm Res 4: 53-58. https://doi.org/10.1007/BF02856441
  25. Yang HS. 2003. In vitro evaluation of the cytotoxicity of gallic acid and vitamin A. Korean J Oral Anatomy 27: 1-10.
  26. Kim YC, Hong HD, Rho JH, Cho CW, Rhee YK, Yim JH. 2007. Changes of phenolic acid contents and radical scavenging activities of ginseng according to steaming times. J Ginseng Res 31: 230-236. https://doi.org/10.5142/JGR.2007.31.4.230
  27. Kang YH, Park YK, Oh SR, Moon KD. 1995. Studies on the physiological functionally of pine needle and mugwort extracts. Korean J Food Sci Technol 27: 978-984.
  28. Li H, Choi YM, Lee JS, Park JS, Yeon KS, Han CD. 2007. Drying and antioxidant characteristics of the shiitake (Lentinus edodes) mushroom in a conveyer-type far-infrared dryer. J Korean Soc Food Sci Nutr 36: 250-254. https://doi.org/10.3746/jkfn.2007.36.2.250
  29. Jeong JW, Lee YC, Jung SW, Lee KM. 1994. . Korean J Food Sci Technol 26: 709-712.

Cited by

  1. Radioprotective Potential of Panax ginseng: Current Status and Future Prospectives vol.19, pp.4, 2011, https://doi.org/10.7783/KJMCS.2011.19.4.287
  2. Evaluation on Extraction Conditions and HPLC Analysis Method for Ginsenosides in Panax ginseng vol.24, pp.1, 2016, https://doi.org/10.7783/KJMCS.2016.24.1.47
  3. Antioxidant and Antitumor Activities of Methanolic Extracts from Humulus japonicus vol.25, pp.2, 2012, https://doi.org/10.9799/ksfan.2012.25.2.357
  4. Comparison of Ginsenoside Content and Ratio of Root Tissue According to Root Age and Diameter in Panax ginseng C. A. Meyer vol.21, pp.5, 2013, https://doi.org/10.7783/KJMCS.2013.21.5.342
  5. Antioxidant and Anticancer Effects of Water Extract from Pleurotus ostreatus vol.28, pp.1, 2015, https://doi.org/10.9799/ksfan.2015.28.1.060
  6. Effects of Fresh Ginseng Size and Shape on Quality of Black Ginseng vol.29, pp.5, 2016, https://doi.org/10.9799/ksfan.2016.29.5.610
  7. Determination of Anti-oxidative and Whitening Effects of Complex Extracts Obtained from Sprout Panax ginseng C.A. Meyer and Cassia nomame (Sieb.) Honda on Skin vol.16, pp.3, 2018, https://doi.org/10.20402/ajbc.2018.0203
  8. 새송이버섯, 팽이버섯 열수추출물의 항산화 및 항암 활성 vol.31, pp.6, 2018, https://doi.org/10.9799/ksfan.2018.31.6.911