References
- A. V. Arhangel'skii, Topological Function Spaces, Mathematics and its Applications (Soviet Series), 78. Kluwer Academic Publishers Group, Dordrecht, 1992.
- A. V. Arhangel'skii and L. S. Pontryagin (Eds.), General Topology I, Encyclopaedia of Mathematical Sciences, 17. Springer-Verlag, Berlin, 1990.
- J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1970.
- S. P. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), 107-115.
- S. P. Franklin, Spaces in which sequences suffice II, Fund. Math. 61 (1967), 51-56.
- H. Z. Hdeib, On spaces which have countable tightness, Questions Answers Gen. Topology 6 (1988), no. 1, 11-20.
- W. C. Hong, Generalized Frechet-Urysohn spaces, J. Korean Math. Soc. 44 (2007), no. 2, 261-273. https://doi.org/10.4134/JKMS.2007.44.2.261
- V. I. Malykhin and G. Tironi, Weakly Frechet-Urysohn and Pytkeev spaces, Topology Appl. 104 (2000), no. 1-3, 181-190. https://doi.org/10.1016/S0166-8641(99)00027-9
- T. W. Rishel, A class of spaces determined by sequences with their cluster points, Portugal. Math. 31 (1972), 187-192.
- F. Siwiec, Generalizations of the first axiom of countability, Rocky Mountain J. Math. 5 (1975), 1-60. https://doi.org/10.1216/RMJ-1975-5-1-1
- L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology, Springer-Verlag, Berlin, 1978.
- A. Wilansky, Topology for Analysis, Ginn and Company, 1970.
Cited by
- ON SPACES WHICH HAVE COUNTABLE TIGHTNESS AND RELATED SPACES vol.34, pp.2, 2012, https://doi.org/10.5831/HMJ.2012.34.2.199