DOI QR코드

DOI QR Code

The protein truncation caused by fusion of PEP-1 peptide and protective roles of transduced PEP-1-MsrA in skin cells

  • Lee, Tae-Hyung (Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine) ;
  • Choi, Seung-Hee (Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine) ;
  • Kim, Hwa-Young (Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine)
  • Received : 2010.12.21
  • Accepted : 2011.01.26
  • Published : 2011.04.30

Abstract

PEP-1 peptide has been used for transduction of native protein into mammalian cells. This work describes the findings that the fusion of PEP-1 to target proteins led to protein truncation likely in a non-protein-specific manner. Approximately 75% of PEP-1-MsrA fusion protein was truncated in the N-terminal region of MsrA between Lys-27 and Val-28 during expression in Escherichia coli and purification. This large protein truncation was also observed in another PEP-1 fused protein, PEP-1-MsrB2, in the N-terminal region of MsrB2. The full-length PEP-1-MsrA protein was rapidly transduced into keratinocyte cells within 15 min. The transduced PEP-1-MsrA was functionally active and could protect skin cells against oxidative stress- and ultraviolet radiation-induced cell death. Collectively, our data demonstrated the protective roles of MsrA in skin cells and, moreover, may raise a concern of protein truncation caused by fusion of PEP-1 about the general use of this peptide for protein transduction.

Keywords

References

  1. Morris, M. C., Depollier, J., Mery, J., Heitz, F. and Divita, G. (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol. 19, 1173-1176.
  2. Choi, H. S., An, J. J., Kim, S. Y., Lee, S. H., Kim, D. W., Yoo, K. Y., Won, M. H., Kang, T. C., Kwon, H. J., Kang, J. H., Cho, S. W., Kwon, O. S., Park, J., Eum, W. S. and Choi, S. Y. (2006) PEP-1-SOD fusion protein efficiently protects against paraquat-induced dopaminergic neuron damage in a Parkinson disease mouse model. Free Radic. Biol. Med. 41, 1058-1068. https://doi.org/10.1016/j.freeradbiomed.2006.06.006
  3. Kim, D. W., Jeong, H. J., Kang, H. W., Shin, M. J., Sohn, E. J., Kim, M. J., Ahn, E. H., An, J. J., Jang, S. H., Yoo, K. Y., Won, M. H., Kang, T. C., Hwang, I. K., Kwon, O. S., Cho, S. W., Park, J., Eum, W. S. and Choi, S. Y. (2009) Transduced human PEP-1-catalase fusion protein attenuates ischemic neuronal damage. Free Radic. Biol. Med. 47, 941-952. https://doi.org/10.1016/j.freeradbiomed.2009.06.036
  4. An, J. J., Lee, Y. P., Kim, S. Y., Lee, S. H., Lee, M. J., Jeong, M. S., Kim, D. W., Jang, S. H., Yoo, K. Y., Won, M. H., Kang, T. C., Kwon, O. S., Cho, S. W., Lee, K. S., Park, J., Eum, W. S. and Choi, S. Y. (2008) Transduced human PEP-1-heat shock protein 27 efficiently protects against brain ischemic insult. FEBS J. 275, 1296-1308. https://doi.org/10.1111/j.1742-4658.2008.06291.x
  5. Kim, H. Y. and Gladyshev, V. N. (2007) Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem. J. 407, 321-329. https://doi.org/10.1042/BJ20070929
  6. Lee, B. C., Dikiy, A., Kim, H. Y. and Gladyshev, V. N. (2009) Functions and evolution of selenoprotein methionine sulfoxide reductases. Biochim. Biophys. Acta 1790, 1471-1477. https://doi.org/10.1016/j.bbagen.2009.04.014
  7. Luo, S. and Levine, R. L. (2009) Methionine in proteins defends against oxidative stress. FASEB J. 23, 464-472. https://doi.org/10.1096/fj.08-118414
  8. Cabreiro, F., Picot, C. R., Perichon, M., Castel, J., Friguet, B. and Petropoulos, I. (2008) Overexpression of mitochondrial methionine sulfoxide reductase B2 protects leukemia cells from oxidative stress-induced cell death and protein damage. J. Biol. Chem. 283, 16673-16681. https://doi.org/10.1074/jbc.M708580200
  9. Kantorow, M., Hawse, J. R., Cowell, T. L., Benhamed, S., Pizarro, G. O., Reddy, V. N. and Hejtmancik, J. F. (2004) Methionine sulfoxide reductase A is important for lens cell viability and resistance to oxidative stress. Proc. Natl. Acad. Sci. U.S.A. 101, 9654-9659. https://doi.org/10.1073/pnas.0403532101
  10. Kwak, G. H., Kim, J. R. and Kim, H. Y. (2009) Expression, subcellular localization, and antioxidant role of mammalian methionine sulfoxide reductases in Saccharomyces cerevisiae. BMB Rep. 42, 113-118. https://doi.org/10.5483/BMBRep.2009.42.2.113
  11. Kim, H. Y. and Gladyshev, V. N. (2004) Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases. Mol. Biol. Cell 15, 1055-1064.
  12. Ogawa, F., Sander, C. S., Hansel, A., Oehrl, W., Kasperczyk, H., Elsner, P., Shimizu, K., Heinemann, S. H. and Thiele, J. J. (2006) The repair enzyme peptide methionine- S-sulfoxide reductase is expressed in human epidermis and upregulated by UVA radiation. J. Invest. Dermatol. 126, 1128-1134. https://doi.org/10.1038/sj.jid.5700116
  13. Schallreuter, K. U., Rubsam, K., Chavan, B., Zothner, C., Gillbro, J. M., Spencer, J. D. and Wood, J. M. (2006) Functioning methionine sulfoxide reductases A and B are present in human epidermal melanocytes in the cytosol and in the nucleus. Biochem. Biophys. Res. Commun. 342, 145-152. https://doi.org/10.1016/j.bbrc.2006.01.124
  14. Jung, B., Lee, E. H., Chung, W. S., Lee, S. J., Shin, S. H., Joo, S. H., Kim, S. K. and Lee, J. H. (2003) Increased viability of PC12 cells exposed to amyloid-beta peptide by transduction with human TAT-methionine sulfoxide reductase. Neuroreport. 14, 2349-2353. https://doi.org/10.1097/00001756-200312190-00012
  15. Yamaguchi, H., Woods, N. T, Piluso, L. G., Lee, H. H., Chen, J., Bhalla, K. N., Monteiro, A., Liu, X., Hung, M. C. and Wang, H. G. (2009) p53 acetylation is crucial for its transcription-independent proapoptotic functions. J. Biol. Chem. 284, 11171-11183. https://doi.org/10.1074/jbc.M809268200
  16. Lee, Y. P., Kim, D. W., Lee, M. J., Jeong, M. S., Kim, S. Y., Lee, S. H., Jang, S. H., Park, J., Kang, T. C., Won, M. H., Cho, S. W., Kwon, O. S., Eum, W. S. and Choi, S. Y. (2008) Human brain pyridoxal-5'-phosphate phosphatase (PLPP): protein transduction of PEP-1-PLPP into PC12 cells. BMB Rep. 41, 408-413. https://doi.org/10.5483/BMBRep.2008.41.5.408
  17. Shin, M. J., Lee, Y. P., Kim, D. W., An, J. J., Jang, S. H., Cho, S. M., Sheen, S. H., Lee, H. R., Kweon, H. Y., Kang, S. W., Lee, K. G., Park, J., Eum, W. S., Cho, Y. J. and Choi, S. Y. (2010) Transduced PEP-1-AMPK inhibits the LPS-induced expression of COX-2 and iNOS in Raw264.7 cells. BMB Rep. 43, 40-45. https://doi.org/10.5483/BMBRep.2010.43.1.040
  18. Kim, H. Y. and Gladyshev, V. N. (2005) Role of structural and functional elements of mouse methionine-S-sulfoxide reductase in its subcellular distribution. Biochemistry 44, 8059-8067. https://doi.org/10.1021/bi0501131

Cited by

  1. PEP-1-MsrA ameliorates inflammation and reduces atherosclerosis in apolipoprotein E deficient mice vol.13, pp.1, 2015, https://doi.org/10.1186/s12967-015-0677-8